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Abstract 

The current study examines the profit analysis of a similar cold standby system with endurance time and 

preventive maintenance. In order to achieve this goal, we consider two categories of repair facilities in 

this model: primary repair facilities and specialized repair facilities. Primary repairers are usually referred 

to as general repairers and have usually stayed at the restoration facility, if it is not able to complete the 

repair in time, then specialist repairmen are called for complex repair. The system is sent for preventive 

maintenance once the maximum operation time has elapsed. Using the Semi-Markov process and 

Markov regenerative point approach, reliability characteristics such as MTSF, availability and busy 

period of repairmen are obtained. Further, the profit analysis is performed. The tabular and graphical 

representations are also done concerning the failure rate. 
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1. Introduction 

"Weibull Distribution" is among the most used distributions in reliability engineering. It is a 

kind of versatile distribution that can take the values from the other distributions using the 

parameter called the shape parameter. The Weibull Distribution is a continuous probability 

distribution that is used to analyze life data, model failure times and assess product reliability. 

It can also fit a vast range of data from other fields like economics, hydrology, biology and 

engineering. It is an extreme value of probability distribution that is frequently used to model 

reliability, survival, wind speeds and other data. The only reason to use the Weibull 

distribution is because of its flexibility as it can simulate various distributions like normal and 

exponential distributions. Ashish Kumar and Monika Saini [1] discussed the concept of fuzzy 

reliability used for the analysis of the fuzzy availability of a sugar plant. The effect of coverage 

factor, failure and repair rates of subsystems on the system’s fuzzy availability had been 

analyzed. Chapman–Kolmogorov differential equations have been derived with the help of the 

Markov birth-death process. In another study by Ashish Kumar, S. K. Chhillar and S C. Malik 
[2] single-unit system is analyzed by considering the concepts of degradation and maintenance 

subjected to random shocks. Naveen Kumar et al., [3] has proposed work with a motto to 

develop a stochastic framework for the e-waste management plant to optimize its availability 

integrated with reliability, availability, maintainability and dependability (RAMD) measures 

and Markovian analysis to estimate the steady-state availability of the E-waste management 

plant. Monika Saini et al., [4] proposed a novel stochastic model by considering a condenser as 

a system consisting of seven subsystems. All the time-dependent random variables associated 

with failure rates followed exponential distribution while repair rates are arbitrarily distributed. 

Monika Saini et al., [5] done a case study of load haul dump (LHD) machines that considers the 

optimization of failure and repair rate parameters using two well-established metaheuristic 

approaches, namely, genetic algorithm (GA) and particle swarm optimization (PSO). Ashish 

Kumar et al., [6] approached a reliability model of a redundant system having one original and 

one duplicate unit developed with an immediate repair facility.  
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Repairman conducts the preventive maintenance of the unit 

after a pre-specific time to enhance the performance and 

efficiency of the system. All random variables follow the 

Weibull distribution. Ashish Kumar and Monika Saini [7] 

carried out their work to perform RAMD analysis and Failure 

Modes and Effects Analysis (FMEA) unified with the 

development of a novel stochastic model using Markovian 

approach to estimate the Steady-State Availability (SSA) of 

the TIUP. Nivedita Gupta et al., [8] investigate various 

reliability measures of generators used in STP through the 

RAMD approach at the component level. For this purpose, 

mathematical models using the Markovian birth-death process 

have been developed for all subsystems of the generator. 

Hemant Kumar saw and V K Pathak [9] developed a stochastic 

model of the single-unit system in a manufacturing plant. The 

system has been investigated under the assumption that the 

unit works in three different states: normal state, partially 

failed state and totally failed state. The system suffers three 

types of failures: viz; Hardware failure, Critical human failure 

and Non-critical human failure. In this field, a large number 

of papers such as performance analysis of a redundant system 

of non-identical units with Weibull densities for failure and 

repair were discussed by Ashish Kumar et al., [10]. Similarly, 

Gupta and Gupta [11] estimated Stochastic analysis of a 

reliability model of the one-unit system with post-inspection, 

post-repair, preventive maintenance and replacement. 

Kadyan, Mukender Singh [12] evaluated the Reliability and 

profit analysis of a single-unit system with preventive 

maintenance subject to the maximum operation time of the 

system. 

In the present paper, we develop a stochastic model for profit 

analysis of a two-unit similar cold standby system with 

endurance time and preventive maintenance for the evaluation 

of system reliability, mean time to system failure, steady-state 

availability, a busy period of the server, expected number of 

repairs, expected number of visits by the server and profit 

function of the system by considering all time random 

variables as Weibull distributed. The possible states of the 

proposed model have been discussed under the system 

description. Two types of repair persons have been provided 

to do repair and maintenance activities. After maximum 

operation time, the system undergoes preventive maintenance. 

All random variables are statistically independent. Semi-

Markov process and regenerative point techniques are used to 

draw recurrence relations for various reliability 

characteristics. All time random variables are Weibull 

distributed. 

 

2 The modelling of the system was based on the following 

assumptions 

1. The systems consist of two units of similar (same) type, 

the primary being in operation and the second being 

stored as a cold standby that will not fail until it is going 

into operation.  

2. The system is provided with preventive maintenance after 

the maximum operating time.  

3. Unit failure is detected and attended to by a primary 

repair person.  

4. Endurance time is applied when one can wait while the 

primary repair person is undergoing repair for the failed 

unit. The expert repair person is called to the system 

when a primary repair person is not able to do some 

complex repairs.  

5. The specialist leaves the system after completing the 

recovery of the failed unit, and the other unit can be 

attended to by the primary repairer.  

6. The units are new after each restoration and preventive 

maintenance.  

7. At time ’t’ one unit is simply online (working mode) and 

another unit is in standby mode.  

8. As each unit fails, the machine becomes inoperable.  

9. Failures, repairs and downtime are randomly distributed. 

The repairer does not harm the unit in any way.  

10. All random variables are independent together.  

11. There is a single recovery facility serviced by a repairer, 

namely the primary and the specialized repair person.  

 

 
  

Fig 1: Transition diagram 

  

3 Notation and States of the System 

 Modes of the units (parts) 𝑁0 - Normal unit when it is 

operative, 𝑁𝑠 - normal unit when it is kept in cold standby, 

P.M - preventive maintenance, 𝑊𝑟 - waiting for repair, 𝑈𝑟 - 

under repair, 𝑈𝑒 - failed unit repair by a specialist repair 

person. 

 

 States of the System are 

𝑆0 - (𝑁0, 𝑁𝑠), 𝑆1 − (𝑈𝑟 , 𝑁0), 𝑆2 − (𝑃.𝑀,𝑁0), 𝑆3 − (𝑈𝑒 , 𝑈𝑟), 

𝑆4 − (𝑈𝑒 , 𝑈𝑅), 𝑆5 − (𝑈𝐸 , 𝑈𝑟) 

𝑞𝑖𝑗(𝑡), 𝑄𝑖𝑗(𝑡) : pdf and cdf of first passage time from "i" 

regenerative state to a regenerative or failed state "j" without 

visiting other regenerative states in (0,t]. 

𝑞𝑖𝑗
𝑘 (𝑡), 𝑄𝑖𝑗

𝑘 (𝑡) : pdf and cdf of first passage time from "i" 

regenerative state to a regenerative or failed state "j" without 

visiting "k" state once in (0,t]. 

𝑝𝑖𝑗 , 𝑝𝑖𝑗
𝑘  : Probability of transition from an "i" regenerative 

state to "j" regenerative state without/ with visiting "k" state 

once in (0,t]. 

∗∗/∗ : Laplace - Stieltjes/ Laplace transform symbol. 

O - initial stage of the system (i.e at time t=0, one unit starts 

operating and the other has been kept on cold standby), 

ℎ(𝑡), 𝐻(𝑡): ℎ𝜂𝑡𝑛−1𝑒−(ℎ𝑡𝜂) = pdf of the patience time. 

G(t), g(t) : cdf and pdf of repair time. 

𝑓(𝑡): 𝛽𝜂𝑡𝑛−1𝑒−(𝛽𝑡𝜂) = pdf of the failure rate of first unit 

repair by a primary repair person. 

𝑓2(𝑡): 𝜒𝜂𝑡𝑛−1𝑒−(𝜒𝑡𝜂) = pdf of the failure rate of standby unit 

repair by a primary repair person. 

𝑔𝑚(𝑡), 𝐺𝑚(𝑡) : probability density function of repair time of 

repair person (m= p,s), where 𝑔𝑝(𝑡) = 𝛾𝜂𝑡𝑛−1𝑒−(𝛾𝑡𝜂) and 

𝑔𝑠(𝑡) = 𝛼𝜂𝑡𝑛−1𝑒−(𝛼𝑡𝜂)  

𝑓1(𝑡): 𝛿𝜂𝑡𝑛−1𝑒−(ℎ𝑡𝛿) = pdf of maximum operation time. 

https://www.mathsjournal.com/
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𝑔2(𝑡): 𝑙𝜂𝑡𝑛−1𝑒−(𝑙𝑡𝜂) = pdf of preventive maintenance rate of 

first unit. 

𝜂 > 0, which is common shape parameter. 

𝜒, 𝛼, 𝛽, 𝛿, ℎ, 𝑙 > 0 are scale parameter. 

 

4 Equations 

Transition Probabilities and Mean Sojourn Times 

Simple probabilistic concerns yield the subsequent 

expressions for the non-zero elements 

 

𝑃𝑖𝑗 = 𝑄𝑖𝑗(∞) = ∫ 𝑞𝑖𝑗(𝑡)𝑑𝑡 (1) 

  

𝑄01(𝑡) = ∫
∞

0
𝑓(𝑡)𝐹1(𝑡)𝑑𝑡 = ∫

∞

0
𝛽𝜂𝑡𝑛−1𝑒−(𝛽𝑡𝜂). 𝑒−(𝛿𝑡𝜂)𝑑𝑡(2) 

  

𝑄02(𝑡) = ∫
∞

0
𝑓1(𝑡)𝐹(𝑡)𝑑𝑡 = ∫

∞

0
𝛿𝜂𝑡𝑛−1𝑒−(𝛿𝑡𝜂). 𝑒−(𝛽𝑡𝜂)𝑑𝑡 (3) 

  

𝑄10(𝑡) = ∫
∞

0
𝑔𝑝(𝑡)𝐻(𝑡). 𝐹2(𝑡)𝑑𝑡 =

∫
∞

0
𝛾𝜂𝑡𝑛−1𝑒−(𝛾𝑡𝜂). 𝑒−(ℎ𝑡𝜂). 𝑒−(𝜒𝑡𝜂)𝑑𝑡  (4) 

  

𝑄13(𝑡) = ∫
∞

0
ℎ(𝑡). 𝐺𝑝(𝑡). 𝐹2(𝑡)𝑑𝑡 =

∫
∞

0
ℎ𝜂𝑡𝑛−1𝑒−(ℎ𝑡𝜂). 𝑒−(𝛾𝑡𝜂). 𝑒−(𝜒𝑡𝜂)𝑑𝑡 (5) 

  

 𝑄14(𝑡) = ∫
∞

0
𝑓2(𝑡). 𝐻(𝑡). 𝐺𝑝(𝑡)𝑑𝑡 =

∫
∞

0
𝜒𝜂𝑡𝑛−1𝑒−(𝜒𝑡𝜂). 𝑒−(𝛾𝑡𝜂). 𝑒−(ℎ𝑡𝜂)𝑑𝑡 (6) 

  

𝑄30(𝑡) = ∫
∞

0
𝑔𝑠(𝑡)𝑑𝑡 = ∫

∞

0
𝛼𝜂𝑡𝑛−1𝑒−(𝛼𝑡𝜂)𝑑𝑡 = 𝑝30 = 1

 (7) 

  

𝑄40(𝑡) = ∫
∞

0
𝑔𝑠(𝑡). 𝐹(𝑡)𝑑𝑡 = ∫

∞

0
𝛼𝜂𝑡𝑛−1𝑒−(𝛼𝑡𝜂). 𝑒−(𝛽𝑡𝜂)𝑑𝑡

 (8) 

  

𝑄45(𝑡) = ∫
∞

0
𝑓(𝑡). 𝐺𝑠(𝑡)𝑑𝑡 (9) 

  

𝑄50(𝑡) = ∫
∞

0
𝑔𝑠(𝑡)𝑑𝑡 = ∫

∞

0
𝛼𝜂𝑡𝑛−1𝑒−(𝛼𝑡𝜂)𝑑𝑡 (10) 

 

𝑄20(𝑡) = ∫
∞

0
𝑔2(𝑡)𝑑𝑡 (11) 

 

lim
𝑡→∞

𝑄01(𝑡) = 𝑃01𝑃01 =
𝛽

𝛽+𝛿
 (12) 

 

 

lim
𝑡→∞

𝑄02(𝑡) = 𝑃02𝑃02 =
𝛿

𝛿+𝛽
 (13) 

 

 

𝑃01 + 𝑃02 =
𝛽

𝛿+𝛽
+

𝛿

𝛿+𝛽
= 1 (14) 

  

𝑃10 =
𝛾

𝛾+ℎ+𝜒
, 𝑃13 =

ℎ

𝛾+ℎ+𝜒
, 𝑃14 =

𝜒

𝛾+ℎ+𝜒
 (15) 

 

 

𝑃10 + 𝑃13 + 𝑃14 =
𝛾

𝛾+ℎ+𝜒
+

ℎ

𝛾+ℎ+𝜒
+

𝜒

𝛾+ℎ+𝜒
= 1 (16) 

  

𝑃20 = 1 (17) 

  

lim
𝑡→∞

𝑄40(𝑡) = 𝑃40𝑃40 =
𝛼

𝛼+𝛽
 (18) 

  

𝑃40 + 𝑃45 = 1 (19) 

  

𝑃50 = 1. (20) 

Let T denote the time to system failure then the mean sojourn 

times (𝜇𝑖)in the state 𝑆𝑖 are given by 

 

(𝜇𝑖) = 𝐸(𝑡) = ∫
∞

0
𝑃[𝑇 > 𝑡]𝑑𝑡 (21) 

 

 Therefore, the mean sojourn times (𝜇𝑖) at regenerative states 

𝑆𝑖 are as follows: 

 

𝜇0(𝑡) = ∫
∞

0
𝐹(𝑡)𝐹1(𝑡)𝑑𝑡 (22) 

  

=
Γ(1+

1

𝜂
)

(𝛽+𝛿)
1
𝜂

 (23) 

  

𝜇1(𝑡) =
Γ(1+

1

𝜂
)

(𝛾+ℎ+𝜒)
1
𝜂

 (24) 

  

𝜇0(𝑡) =
Γ(1+

1

𝜂
)

(𝛽+𝛿)
1
𝜂

 (25) 

  

𝜇2(𝑡) =
Γ(1+

1

𝜂
)

(𝑙)
1
𝜂

 (26) 

 similarly,  

 

𝜇3(𝑡) =
Γ(1+

1

𝜂
)

(𝛼)
1
𝜂

 (27) 

  

5 Mean Time to System Failure: 

 Let 𝜋𝑖(𝑡) be the c.d.f of first passage time from the 

regenerative state 𝑆𝑖 to a failed state. The obtained recursive 

relations for 𝜋𝑖(𝑡)  

 

𝜋0(𝑡) = 𝑄01(𝑡)©𝜋1(𝑡) + 𝑄02(𝑡)©𝜋2(𝑡)𝑥 (28) 

  

𝜋1(𝑡) = 𝑄10(𝑡)©𝜋0(𝑡) + 𝑄13(𝑡) + 𝑄14©𝜋4(𝑡) (29) 

  

𝜋2(𝑡) = 𝑄20(𝑡)©𝜋0(𝑡) (30) 

 

 We are taking Laplace Steiltjes transform of the above 

equation:  

 

(𝜋0
∗∗, 𝜋1

∗∗, 𝜋2
∗∗) = 𝑄∗∗−1(0, 𝑄13

∗∗ + 𝑄14
∗∗ , 0). (31) 

 

Where,  

𝑄∗∗−1 =

[
 
 
 
1 −𝑄01

∗∗ −𝑄02
∗∗

−𝑄10
∗∗ 1 0

−𝑄20
∗∗ 0 1

]
 
 
 
[

𝜋0
∗∗

𝜋1
∗∗

𝜋2
∗∗] = [

0
𝑄13

∗∗

0
]. (32) 

 Now, by solving the above equation for 𝜋0
∗∗(𝑠), we get the 

mean time to system failure when the system starts from the 

state 𝑆0 given by  

 

𝐷∗(𝑆) = 1 − 𝑄0,1
∗∗ (𝑠)𝑄1,0

∗∗ (𝑠) − 𝑄0,2
∗∗ (𝑠)𝑄2,0

∗∗ (𝑠) (33) 

  

𝑁(𝑠) = 𝑄01(𝑄13
∗∗(𝑠) + 𝑄14

∗∗(𝑠)) (34) 

  

6 Availability 

 Let 𝑀𝑖(𝑡) denote the probability that the system is initially in 

regenerative state 𝑆𝑖 ∈ 𝐸 is up at time t without passing 

through any other regenerative state or returning to itself 

through one or more non-regenerative states. 

https://www.mathsjournal.com/
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The steady state of the availability of both the repair person is 

given by  

 

𝐴0
∗(𝑠) =

𝑁2(𝑠)

𝐷1(𝑠)
,  (35) 

  

𝑤ℎ𝑒𝑟𝑒, 𝐷1(𝑠) = 𝜇0 + 𝜇1𝑝01 + 𝜇2𝑝02 + 𝜇3𝑝01𝑝13 +
𝜇4𝑝0𝑝14 + 𝜇5𝑝50 (36) 

  

7. Busy Period Analysis Busy period for Primary Repair 

person: Let 𝑈𝑖 be the probability that the given system is 

going under repair with the help of a regular repair facility 

which is in state 𝑆𝑖 ∈ 𝐸 at a time ’t’ without transiting to any 

regenerative state. Therefore,  

 

𝑈1 = 𝐺𝑝(𝑡). (37) 

 

 Taking Laplace-Transform and solving for 𝐵0
∗(𝑠)  

 

𝐵𝑝
∗(𝑠) =

𝑁3(𝑆)

𝐷1(𝑆)
, (38) 

 

 Hence, we get  

 

𝑈1
∗(0) = ∫

∞

0
𝑡𝑔𝑝(𝑡)𝑑𝑡 = 𝑈1 = 𝜇1 (39) 

  

𝑁3 = 𝜇1𝑝01. (40) 

 

Busy Period of the server due to Specialist Repair Person 

Let 𝑈𝑖 be the probability that the system is going under repair 

by a specialist repair person in the given state 𝑆𝑖 ∈ 𝐸 at a 

given time ’t’ without moving to any regenerative state. 

Therefore,  

 

𝑈𝑖 = 𝐺𝑠(𝑡). (41) 

  

Taking Laplace-Transform and solving for 𝑆0
∗(𝑠)  

 

𝐵𝑠
∗(𝑡) =

𝑁4(𝑆)

𝐷1(𝑆)
, (42) 

  

therefore, 

 

𝑁4 = 𝜇3𝑝01𝑝13 + 𝜇4𝑝01𝑝14 + 𝜇5𝑝01𝑝14𝑝45. (43) 

  

8 Due To Preventive Maintenance 

 Let 𝑃𝑖
𝑝𝑚

(𝑡) be the expected number of preventive 

maintenance by the server in (0, 𝑡], given that the system 

entered the regenerative state 𝑆𝑖 at t=0. Taking Laplace-

Transform of above equation and solving for 𝑃0
∗(𝑠)  

 

𝑃0
∗(𝑠) =

𝑁5(𝑆)

𝐷1(𝑆)
, (44) 

 

we have  

 

𝑁5 = 𝜇2𝑝02. (45) 

  

9 Expected No. of Visits By the Server 

 Eventually, we get a steady state, the function of time for 

which the expected number of visits by the server is given by  

 

𝑉0 = lim
𝑠→0

𝑁6(𝑆)

𝐷1(𝑆)
, (46) 

  

𝑁6 = 𝑝10. (47) 

 

10 Profit Analysis 

 The Expected total P(t) per unit time incurred to the system is 

given by:  

  

𝑃(𝑡) = 𝐾0𝐴0 − 𝐾1𝐵0
𝑅 − 𝐾2𝐵0

𝑠 − 𝐾3𝑝0
𝑝𝑚

− 𝐾4𝑁0 (48) 

 

𝐾0 = Revenue per unit up-time of the system 

𝐾1 = Cost per unit time for which primary repair person is 

busy in repair 

𝐾2 = Cost per unit time for which specialist repair person is 

busy in repair 

𝐾3 = Cost per preventive maintenance 

𝐾4 = Cost per visit by the server 

 

11. particular cases 

1. If we take shape parameter 𝜂 = 0.5 then the given 

maximum operation time/failure of Main unit/failure of 

standby unit/preventive maintenance/repair of Main 

unit/repair of the standby unit time distributions reduce to:- 

  

𝑔2(𝑡) =
𝑙

2√𝑡
𝑒−𝑙√𝑡 , 𝑓(𝑡) =

𝛽

2√𝑡
𝑒−𝛽√𝑡 , 𝑓1(𝑡) =

𝛿

2√𝑡
𝑒−𝛿√𝑡 , ℎ(𝑡) =

ℎ

2√𝑡
𝑒−ℎ√𝑡  (49) 

  

𝑓2(𝑡) =
𝜒

2√𝑡
𝑒−𝜒√𝑡 , 𝑔𝑝(𝑡) =

𝛾

2√𝑡
𝑒−𝛾√𝑡 , 𝑔𝑠(𝑡) =

𝛼

2√𝑡
𝑒−𝛼√𝑡  (50) 

 

2. If we take shape parameter 𝜂 = 2.0 then the given 

reliability characteristics reduce to Rayleigh with the pdf  

 

𝑔2(𝑡) = 2𝑙𝑒−𝑙𝑡2
, 𝑓(𝑡) = 2𝛽𝑒−𝛽𝑡2

, 𝑓1(𝑡) = 2𝛿𝑒−𝛿𝑡2
, ℎ(𝑡) =

2ℎ𝑒−ℎ𝑡2
  

 (51) 

  

𝑓2(𝑡) = 2𝜒𝑒−𝜒𝑡2
, 𝑔𝑝(𝑡) = 2𝛾𝑒−𝛾𝑡2

, 𝑔𝑠(𝑡) = 𝛼𝑒−𝛼𝑡2
  (52) 

  

𝑡 ≥ 0 𝑎𝑛𝑑 𝜂, 𝛽, 𝛾, 𝛼, `𝑙, ℎ, 𝑘, `𝜒 ` >  0 

 
12 Tables 

 

For shape parameter 𝜼 = 𝟐,𝜶 = 𝟏. 𝟐, 𝜸 = 𝟓, 𝒉 = 𝟎. 𝟎𝟎𝟗, 𝜹 = 𝟐, 𝝌 = 𝟏. 𝟓, 𝒍 = 𝟏. 𝟒 

Particular values of ( 𝜷) MTSF Availability Profit 

0.01 133.08 0.5208 4999.2 

0.02 682.13 0.5189 4179.9 

0.03 438.58 0.5172 3570.4 

0.04 329.2 0.5154 3060.2 

0.05 262.84 0.5134 2804.5 

0.06 218.2 0.5110 2700.6 

0.07 186.44 0.5099 2689.5 

0.08 164.20 0.5068 2676.6 
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0.09 144.97 0.5062 2663.3 

0.1 131.04 0.5046 2652.2 

 
For shape parameter 𝜼 = 𝟐,𝜶 = 𝟏. 𝟐, 𝜸 = 𝟓, 𝒉 = 𝟎. 𝟎𝟎𝟗, 𝜹 = 𝟐, 𝝌 = 𝟏. 𝟓, 𝒍 = 𝟏. 𝟒 

Particular values of ( 𝜷) MTSF Availability Profit 

0.01 1208.6 2.1592 5798.6 

0.02 1205.4 2.1244 5069.9 

0.03 1202.4 2.0926 4334.4 

0.04 1199.4 2.0593 3900.1 

0.05 1196.2 2.0282 3696.8 

0.06 1193.3 2.0256 3556.6 

0.07 1178.4 2.0242 3545.5 

0.08 1093.4 1.1656 3534 

0.09 1067.3 1.1667 3519.7 

0.1 1032.2 1.1656 3500.4 

 

13 Figures 

 
  

Fig 2: MTSF vs Failure rate𝛽 

  

 
  

Fig 3: Profit vs Failure rate𝛽 
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Graphical analysis 

The curve for MTSF and Failure rate have been drawn for 

different values of shape parameters and repair rate of both 

the repair person, preventive maintenance, and patience time 

has been taken. The variation in MTSF about the failure rate 

is seen in Fig.1 and Figure 2 shows the profit pattern relative 

to the failure rate for various shapes parameter values. The 

data in the tables as mentioned above show that as the shape 

parameter rises (i.e., as the system ages) the values of MTSF, 

availability as well as profit decreases. 

 

Summary and Conclusions  

It is challenging to analyze failures in complex systems with 

many interdependent system components, especially when 

unpredictable events can affect the system’s performance. So, 

there are many ways to represent engineering complex 

systems. However, the shape parameter of the Weibull 

distribution is frequently used to evaluate product reliability 

and its capacity to analyze failure trends is useful in 

identifying the key contributing factors to system failure. 

Additionally enhanced MTSF, availability, and profit for 

higher rates of repair and maintenance and helped decrease 

the system’s downtime. This could be helpful throughout the 

planning, running or decision-making phases. 
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