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Abstract 

Rapid industrialization and population growth especially in the last decade have adversely affected urban 

climate, air quality and caused imbalances in the regional climate at large. There have been very few 

studies on the Concentration of Air Pollutants (SO2, NO2 and RSPM) in urban area. The distribution of 

air pollution parameters has an effect on the human health. In the present study, the concentration 

distributions of air pollution parameters were studied with respect to different seasons for one year 

(October 1, 2012 to September 30, 2013). The data collected for the study is from the Maharashtra 

Pollution Control Board (www. http://mpcb.gov.in) for Mumbai city specific to Bandra Station. 

Probability density functions (pdf) have been used in the analysis of the distribution of pollutant data for 

examining the frequency of high concentration events and also the “goodness-of-fit” of the probability 

density function, to the data, was evaluated, using Kolmogorov-Smirnov test. The evaluation was 

conducted for one year with respect to different seasons. The results of the study indicates that the best 

fit-distributions for air pollution parameters RSPM, SO2 and NO2 concentrations in Mumbai (Bandra) 

were extreme value, Weibull and Pearson V distributions for monsoon season. In winter and summer 

seasons the fit distributions were Weibull distribution for RSPM and NO2 and Beta Distribution for SO2. 

It concludes that the air pollution parameters studied (RSPM, SO2 and NO2) had the different statistical 

distributions with respect to seasons. The difference might be due to the different diffusion characteristics 

of individual pollutant in the air, and the interaction of diffusion characteristics and local geography, 

weather conditions in Mumbai (Bandra). The results can be further applied to prediction of air pollution 

parameters. 
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1. Introduction 

Air pollution is a universal phenomenon but, is a special case varies from area to area [9]. Rapid 

industrialization and population growth especially in the last decade have adversely affected 

urban climate, air quality and caused imbalances in the regional climate at large extent. In 

Mumbai, one of the largest cities in India, Sulfur dioxide (SO2), Nitrogen oxides (NOx) and 

Respirable Suspended Particulate Matter (RSPM) are the measure air pollutants and regularly 

monitored. During the past decades, Mumbai has undergone the most rapid development and 

urbanization in the history, and ambient air pollution in Mumbai has gradually changed. As 

shown in Figure.1.1, the trend of the air pollution (e.g. SO2, NOx) in Bandra, Mumbai has 

improved substantially from 2007 to2012, while another air pollutant factor (RSPM) became a 

serious public health concern in the meantime [5]. 

Probability distribution functions (pdf’s) have been used in the analysis of air pollution data, 

for examining the concentration of air pollutant parameters [6-9]. Treating air pollution as 

stochastic process, concentration of air pollutants is usually treated as random variables with 

measurable statistical properties. Although “it is largely agreed that there is no a priori reason 

to expect that atmospheric distribution should adhere to a specific probability distribution'' [10]. 

If certain conditions are follows, the statistical characteristics of air pollutant concentration can 

be described through statistical distributions. The correctly chosen distribution can help us to 

predict the frequency that exceeds the ambient air quality standard (AQS). For example, by 

making use of the direct association between emission level and some parameters (e.g., the  
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location parameter) of the statistical distributions, Lu (2002) successfully predicted the probabilities exceeding the air quality 

standard and emission source reduction of PM10 concentration to meet the air quality standard in Taiwan [5, 8], applied some 

statistical distributions to determine the best statistical distribution of concentration data of major air pollutants in Shanghai, 

China, the results shows that the best fit distributions for PM10, SO2 and NO2 concentrations were lognormal, Pearson 5 and 

Extreme value distributions. 

In this study, the distribution concentration of SO2, NOx and RSPM between the period October 1, 2012 to September 30, 2013 in 

Bandra, Mumbai were analyzed to simulate the frequency distribution and to estimate the parameters of the selected distributions 

and the main objective was to fit the seasonal concentration data to determine the optimal shape of the concentration distribution 

of ambient air pollutants. 

 

 
 

Fig 1: Annual average concentrations of SO2, NOx and RSPM in Bandra, Mumbai (2007-2012). 

 

2. Methods and Materials 

In the present study, the concentration distributions of air pollution parameters were studied with respect to different seasons for 

one year (October 1, 2012 to September 30, 2013). The data collected for the study is from the Maharashtra Pollution Control 

Board (www. http://mpcb.gov.in) for Mumbai city specific to Bandra Station. Seven probability density functions (pdf) viz. Beta, 

Extreme value, Gamma, Lognormal, Pearson type V and VI and Weibull distributions, have been used in the analysis of the 

distribution of pollutant data, in ordered to determine the shape of the concentration distribution and also the “goodness-of-fit” of 

the probability density function, to the data, was evaluated, using Kolmogorov-Smirnov test. 

 

2.1. Statistical Distributions 

The obtained ambient air pollution parameters concentrations (x) were fitted to seven selected statistical distributions, for different 

seasons for a period separately. The examined distributions are described as follows:  

 

2.1.1 Beta Distribution 

 

The pdf is given by: f(x) =
1

B(α1,α2)

(x−a)α1−1(b−x)α2−1

(b−a)α1+α2−1  , a≤x≤b; α1>0; α2>0; a<b (1) 

 

Where α1 and α2 are the scale and shape parameters of the distribution, [a, b] is the concentration range and B is the beta function 

and is given by  

 

B(α1, α2)=
Γα1Γα2

Γ(α1+α2)
  (2) 

 

2.1.2 Gen. Extreme Value: The pdf is given by: 

  

f(x) = {

1

σ
e−[(1+kz)−1 k⁄ (1+kz)

−1−1
k⁄

 
] k ≠ 0

1

σ
e(−z−e−z) k = 0

 , -∞<x<∞+ for k=0 and 1 +
𝑘(𝑥−𝜇)

𝜎
>0 for k≠ 0  (3) 

 

Where k and σ (>0) are shape and scale parameters and µ is the location parameters and z=
𝑥−𝜇

𝜎
 

 

2.1.3 Gamma Distribution: The pdf is given by 
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 f(x) =
(x−γ)λ−1

σλΓ(λ)
e[−(

x−γ

σ
)]

 , x ≥γ; σ>0; λ>0; γ≥0 (4) 

 

Where σ and λ are the scale and shape parameters of the distribution, γ is the location parameter and Γ is the gamma function and 

is given by,  

 

Γλ=∫ 𝑡𝜆−1𝑒−𝑡 𝑑𝑡
∞

0
 (Eulerian integral form)   

  (5)  

 

2.1.4 Lognormal Distribution: The pdf is given by 

 

f(x) =
1

√2π(x−γ)σ
e

[−[
(ln(x−γ)−μ)2

2σ2 ]]
, x>γ; -∞<µ<∞; σ>0; γ≥0   (6) 

 

Where µ and σ are the scale and shape parameters of the distribution representing the geometric mean and standard geometric 

deviation respectively, while γ is the location parameter. Fitting data to a lognormal distribution evaluates the assumption that the 

logarithmic transformed data values follow a Gaussian distribution.  

 

2.1.5 Pearson type V: The pdf is given by 

 

 f(x) =  
βαe

[−
β

(x−γ)
]

Γα(x−γ)α+1 , x≥γ; α>0; β>0; γ≥0  (7) 

 

Where Γ is the Gamma function, α and β are the scale and shape parameters and γ is the location parameter. 

 

2.1.6 Pearson type VI: The pdf is given by 

 

f(x) =
((x−γ) β⁄ )α1−1

βB(α1,α2)(1+(x−γ) β⁄ )α1+α1
 , x≥γ; β>0; α1>0; α2>0; γ≥0  (8) 

 

Where B is the beta function α1 and α2 are the shape parameters, β is the scale parameter and γ is the location parameter.  

 

2.1.7 Weibull Distribution: The pdf is given by  

 

𝐟(𝐱) = (
𝛂

𝛃
) (

𝐱−𝛄

𝛃
)

𝛂−𝟏

𝐞
[−(

𝐱−𝛄

𝛃
)

𝛂
]
 , x ≥ γ; α > 0; β > 0; γ ≥ 0  (9) 

 

Where α and β are the shape and scale parameters of the distribution, and γ is the location parameter. If α=1 the Weibull 

distribution is identical with the Gamma distribution. 

 

2.2. Parameter Estimation 

The main purpose of the parameter estimation is to determine the specific nature of the theoretical distribution by the particular 

values of their parameters. The optimal values of the scale and shape parameters of the distribution were estimated using the 

method of maximum likelihood. The reasoning behind this method is that among the various possible values of θ the most likely 

value should be one that makes the probability (or probability density) of the observed x as high as possible [3]. This method is 

proposed by geneticist/statistician Sir Ronald A. Fisher around 1922. 

This method helps us to calculate θk parameters of a k-parameter distribution in order to maximize the likelihood function L(θ). 

 

L(θ) = L(x1, x2,…, xn) = ∏  𝑛
𝑖=1 f(xi;θ1, θ2, …, θk)   (10)  

 

where (x1, x2,…, xn) are the independent observations from a random sample deriving from a population following a distribution 

described by a k- parameter probability density function f(x;θ1, θ2, …, θk). 

If f(x1; θ1, θ2, …, θk), f(x2;θ1, θ2, …, θk), …, f(xn;θ1, θ2, …, θk) are the probability functions of each of the sample values then the 

maximum likelihood function describes the joint probability function of the random sample. 

The likelihood function being differentiable at θ1, θ2. . . θk the estimation of the parameters with the maximum likelihood method is 

made by taking the partial derivatives of L(θ) by each parameter and solving the resulting k- equations to zero. Usually, 

computations are made using the logarithm of the likelihood function, and since the logarithm is also a strictly increasing function 

the same parameters values will maximize both the likelihood and the log-likelihood functions. 

 

 
𝜕 ln 𝐿(𝜃)

𝜕𝜃𝑘
= 0  (11) 

 

The method of maximum likelihood is considered advantageous for parameter estimation over the method of moments because, it 

usually does not yield “good” estimators. Therefore, the method of maximum likelihood is intuitively used, because we attempt to 

find the values of the true parameters that would have most likely produced the data that we in fact observed. For most cases of 
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practical interest, the performance of maximum likelihood estimators is optimal for large enough data. This is one of the most 

versatile methods for fitting parametric statistical models to data. On the other hand, since the method of maximum likelihood 

requires sample processing power due to the complex numerical calculations involved, when large data sets are analyzed, 

computational time increases substantially. The location parameter γ was set to zero for the continuous distribution functions since 

it was desired that concentrations would exhibit behavior with physical meaning (it should be noted that accepting a certain value 

as a global or regional particle concentration background is rather difficult and will not be attempted). The upper bound b for the 

beta distribution was set to 300 μg/m3 for RSPM since these concentration levels have never been reached in the Bandra station, 

Mumbai, on a daily basis, even in the occurrence of severe episodic conditions. The optimum scale parameters for the Weibull 

distribution were determined using an iterative trial and error process [1]. 

 

2.3. Goodness-of-fit 

For the evaluation of the above presented probability functions was made using the Kolmogorov-Smirnov (K-S) goodness-of-fit 

test is used. The K-S statistic is based on the maximum difference between the hypothesized cumulative distribution function 

F0(x) and the empirical distribution function of the samples Sn(x). Symbolically, it is given by 

 

Dn= max |F0(x)-Sn(x)|  (12) 

  

The Dn value is compared with the D(n,α) value, which is the largest difference acceptable at the α- level of significance for n- sized 

samples. If Dn< D(n,a) the hypothesis that the sample can be described by the fitted theoretical distribution is accepted at the a 

significance level[4]. 

 

3. Results and Discussion 

3.1. Variability of measured data with respect to seasons 

Table.1 to 3 summarizes the descriptive statistics of SO2, NO2, and RSPM concentration data in Bandra, Mumbai from 2012-

20013. The daily SO2, NO2, and RSPM concentration variability with time is shown in Fig.2 to 5. From Table.1, we can see that 

the ambient air pollutant parameters had seasonal variability. Compare with the National Ambient Air Quality Standards, which 

was 80, 80 and 100 µg/m3 for daily average concentration of SO2, NO2, and RSPM respectively, the frequency of exceedance with 

the standard were higher for RSPM than those for SO2 and NO2, suggesting that particulate air pollution has become the major 

environmental problem in Bandra, Mumbai. 

 
Table 1: Descriptive Statistics with respective season for SO2, NOx and RSPM concentration for monsoon period in Bandra, Mumbai. 

 

Parameter 
Monsoon (µg/m3) 

Average S.D Min P(25) Median P(75) Max 

SO2 19.03 2.12 11 18 19 20 29 

NO2 48.78 13.33 21 44.75 49 53 96 

RSPM 61.72 25.83 30 45 56 73 176 

Source: As figure.1 

 

In the Monsoon season, on an average, all the three parameter SO2, NO2 and RSPM is below the standard level of pollution but 

maximum value of NO2 is above the standard value and that of RSPM approaching the standard value and it is also observed that 

there will be more dispersion as compare to other parameters (See Table 1).  

 
Table 2: Descriptive Statistics with respective season for SO2, NOx and RSPM concentration for winter period in Bandra, Mumbai. 

 

Parameter 
Winter (µg/m3 ) 

Average S.D Min P(25) Median P(75) Max 

SO2 18.46 6.75 4 16 18 19 48 

NO2 50.37 10.96 21 48 52 57 66 

RSPM 161.27 94.94 61 101 148 190.75 797 

 Source: As figure.1 

 

The analysis of Table 3 shows that on an average value of SO2 , NO2 and RSPM is below the standard value but lot of variation is 

observed data and RSPM is attained highest value 

 
Table 3: Descriptive Statistics with respective season for SO2, NOx and RSPM concentration for summer period in Bandra, Mumbai. 

 

Parameters 
Summer (µg/m3 ) 

Average S.D Min P(25) Median P(75) Max 

SO2 18.33 2.4 13 17 18 19 25 

NO2 32.51 12.93 9 22 30 45.3 63 

RSPM 118.73 44.32 32 88 109 147 261 

 Source: As figure.1  

 

AS compare other two seasons Viz Monsoon season and Winter season, summer season value below the standard level with the 

exception that the maximum value of RSPM is quite above the standard level (see Table 3.3). The dispersion of data also shows 

there will be little variation as compare to other two seasons. 
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Fig 2 to 5: Daily concentration of SO2, NOx and RSPM for a period in Bandra, Mumbai. 

 
Source: As figure.1 

 

3.2. Fitting of selected distributions 

In this section, we compared fitting results and parameter estimation of seven theoretical distributions namely, Beta, Extreme 

value, Gamma, Lognormal, Pearson type V and VI and Weibull distributions for air pollution parameters viz. SO2, NO2, and 

RSPM for different seasons respectively. 

The results of the “goodness-of-fit” test for the distributions are shown in Table.4 to 6. Based on the Kolmogorov-Smirnov test, 

the results shows that, the best-fit distributions of SO2, NO2 and RSPM during the period monsoon were Pearson type 5, Extreme 

value and Weibull distributions, for winter season, the best-fit distributions were Beta for SO2, Weibull for NO2, RSPM and for 

summer season, the best-fit distributions were Beta for SO2, Weibull for NO2, RSPM respectively. Here the best- fit distribution 

referred to the one with Kolmogorov-Smirnov test value. 
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A) Monsoon Season  

 
Pearson 5 

 
Extreme Value 

B) Winter Season  

Beta Gamma 

 

c) Summer Season  

Beta Extreme Value 
 

Fig 6: Comparison of different statistical distributions of SO2 concentration. 
 

Note: X-axis is the SO2 concentration, µg/m3; Y-axis is the frequency value. 
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A) Monsoon Season  

Weibull Extreme Value 

B) Winter Season  

Weibull Extreme Value 

C) Summer Season  

Weibull Pearson 5 
Note: X-axis is the NO2 concentration, µg/m3; Y-axis is the frequency value. 

 

Fig 7: Comparison of different statistical distributions of NO2 concentration 
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A) Monsoon Season 

Extreme Value 
Lognormal 

B) Winter Season 

Weibull Pearson 5 

C) Summer Season  

Weibull 
Pearson 5 

 Note: X-axis is the RSPM concentration, µg/m3; Y-axis is the frequency value. 

 
Table 4: Fitted Distribution type and “goodness-of-fit” Statistics Using the Kolmogorov-Smirnov Test for Monsoon season. 

 

Distribution SO2 NO2 RSPM 

Beta 0.1636 0.1897 0.1146 

Gamma 0.1685 0.1889 0.0540 

Gen. Extreme value 0.1561 0.1836 0.0356* 

Lognormal 0.1585 0.1901 0.3866 

Pearson type 5 0.1545* 0.1907 0.0404 

Pearson type 6 0.1576 0.1901 0.0399 

Weibull 0.1953 0.1652* 0.0628 

   Note: * The best fitted distribution. 
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 For checking the goodness of fit, Kolmogorov Smirnov test was used and results shows SO2 best fitted probability distribution is 

Pearson type 5, for NO2 Weibull and General Extreme value distribution fits well for RSPM (see Table 5). For winter season Beta 

distribution is best fitted for SO2 and both NO2 and RSPM Weibull distribution is best fitted (See Table 5). 

  
Table 5: Fitted Distribution type and “goodness-of-fit” Statistics Using the Kolmogorov-Smirnov Test for winter season. 

 

Distribution SO2 NO2 RSPM 

Beta 0.1928* 0.1923 0.0969 

Gamma 0.2130 0.1850 0.1003 

Gen. Extreme value 0.1989 0.1073 0.0990 

Lognormal 0.1955 0.1775 0.0998 

Pearson type 5 0.1962 0.1996 0.0944 

Pearson type 6 0.1967 0.1748 0.1050 

Weibull 0.2128 0.0966* 0.0943* 

 Note: * The best fitted distribution. 

 

In summer season, again similar trend of fitting of probability distribution as we have observed in case of Winter seasons (See 

Table 6). In summary, Weibull probability distribution seems to be best fitted distribution all the three seasons NO2 and RSPM. 

 
Table 6: Fitted Distribution type and “goodness-of-fit” Statistics Using the Kolmogorov-Smirnov Test for Summer season. 

 

Distribution SO2 NO2 RSPM 

Beta 0.2040* 0.0969 0.0969 

Gamma 0.2156 0.1031 0.1003 

Gen. Extreme value 0.2107 0.0989 0.0989 

Lognormal 0.2132 0.0997 0.0996 

Pearson type 5 0.2150 0.1040 0.0944 

Pearson type 6 0.2136 0.1050 0.1050 

Weibull 0.2207 0.0943* 0.0943* 

 Note: * The best fitted distribution. 

 

4. Conclusion 

In the current study, seven selected probability distribution functions were fitted to air pollutant parameters viz. SO2, NO2, and 

RSPM concentration data measured for a year with respective to different seasons at Bandra station, Mumbai. The study shows on 

an average all the parameter for three different seasons below the standard level even the maximum value of NO2 and RSPM is 

above the standard level. From the Kolmogorov-Smirnov goodness-of-fit test, the most appropriate probability density functions 

were the Weibull for NO2 and RSPM for all the tree seasons. Beta distribution is best fitted in Monsoon and Winter seasons for 

SO2 and for NO2 Pearson type 5 distributions best fitted in summer season. The present analysis shows that the best performing 

statistical distributions of various air pollutants for different seasons in Bandra, Mumbai are different. And we conclude on the 

suitability of continuous, positively skewed distributions for describing the air pollutant parameter data in areas with increased 

concentration levels.  
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