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research with special reference to CRD, RCBD, LSD, 

split-plot and strip-plot 
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Abstract 

Agriculture is an applied science that involves all features of crop production. Crop production is an 

agricultural practice followed by worldwide farmers to grow and produce crops to use as food and fiber. 

To obtain the optimization in crop production, the technique of designs of experiment is very useful 

which comes under the branch of applied statistics. Designs of experiment are efficient method to deal 

with problems in agriculture using different resources in crop production technique. The objective of this 

article is to exhibit the researchers to some basic, sophisticated designs utilized by agricultural 

researchers in performing their investigation and also instigate R codes for some selected complete and 

incomplete block designs. In the present article an attempt has been taken to give R codes by taking real 

life research problems for each design. Selected designs have been described in short followed by the R 

codes. 

 

Keywords: Agricultural research, designs, R codes 

 

Introduction 

Agricultural research is a specialized kind of research system which can be carried out using 

laboratory and field facilities as well as by interacting with farmers as critical informants for 

their betterment and raising their day – to – day level of livelihood. Agricultural 

experimentation is based on crops, livestock, fisheries, forests and the environment. Prof. R.A. 

Fisher has developed modern concepts of experimental designs in planning and conduct of 

agricultural field experiments. In agricultural field experiments, an experiment may be 

conducted to see the effect of different fertilizers. There are many types of complete and 

incomplete block designs. In this study, only a few designs have been discussed depending on 

its applicability in the real-life situations. An effort has been made to solve some examples 

related to experimental designs using R codes.  

It is very essential to know the following terminologies about experimental designs. 

Experimental unit: A subject or a group of objects or the total material to which a treatment 

is applied in a trial in a single replication is known as an experimental unit. 

Treatment: A treatment is a substance or known factor that is administered or allocated to one 

or more experimental units to estimate the effect pertaining to certain characteristics or for 

comparing it with others. 

Experimental error: Response from all experimental units which are given similar treatment 

may not be same even under identical situations. These differences in responses may be due to 

various reasons. Other factors like diverseness of soil, climatic factors and genetic differences 

also may cause variations. The variations in response caused by extraneous factors are known 

as experimental errors.  

 

Basic principles of design of experiment 

To reduce the experimental error, one needs to adopt certain principles known as basic 

principles of experimental design. 

The basic principles are replication, randomization and local control. 
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1. Replication: When a treatment appears more than once 
in an experiment, it is said to be replicated. In other 
words, repeated application of the treatments is known as 
replication.  

2. Randomization: The allotment of the treatments to the 
experimental units by random procedure is known as 
randomization. Here all the treatments have equal chance 
of being allocated to different experimental units. 
Randomization assures unbiased estimates of treatment 
means and differences among them. Also, there is an 
unbiased estimate of experimental error and thereby valid 
test of significance. 

3. Local Control: The operation of reducing experimental 
errors by providing relatively heterogeneous 
experimental areas into homogeneous units. The local 
control will increase the efficiency of the experimental 
designs.  

 
Types of Experimental Designs 
• Completely randomized designs (CRD) 
• Randomized block design (RCBD) 
• Latin square design (LSD) 
• Split plot design 
• Strip plot design 

 
Completely Randomized Design (CRD) 
CRD is the basic single factor design. In this design the 
treatments are assigned completely at random so that an 
experimental unit has the same chance of receiving any 
treatment. But CRD is suitable only when the experimental 
material is homogeneous. CRD is not preferred in field 
experiments. 
The statistical model for CRD with one observation per unit is 
 
Yij = µ + ti + eij 

 
µ = overall mean effect  
ti = true effect of the ith treatment  
eij = error term of the jth unit receiving ith treatment 
 
The design is very flexible and statistical analysis is simple 
compared to other designs. In CRD loss of information due to 
missing data is small compared to other designs due to the 
larger number of degrees of freedom for the error source of 
variation. 
CRD is less accurate than other designs. It is difficult to find 
homogeneous experimental units in all aspects and hence 
CRD is seldom suitable for field experiments as compared to 
other experimental designs. 
Completely randomized design is most useful in laboratory 
technique and methodological studies where either the 
experimental material is homogeneous or the intrinsic 
variability between units can be reduced. CRD is also 
recommended in circumstances where an appreciable fraction 
of units is likely to be destroyed or fail to respond. 

 

R Codes 

Example: The following table gives the yields in pounds per 

plot, of five varieties of Wheat after being applied to each of 4 

plots, completely randomized. (Gupta S.C. and Kapoor V.K., 

2014) [3] 

 
Varieties Yield in lbs. 

A 8 8 6 10 

B 10 12 13 9 

C 18 17 13 16 

D 12 10 15 11 

E 8 11 9 8 

 

> treat <-rep(c("A","B","C","D","E"), each = 4) 

>fac<- factor(rep(c(1, 2, 3, 4, 5), each = 4)) 

> treat 

 

OUTPUT 

[1] "A" "A" "A" "A" "B" "B" "B" "B" "C" "C" "C" "C" "D" 

"D" "D" "D" "E" "E" "E" "E" 

> yield <- c(8, 8, 6, 10, 10, 12, 13, 9, 18, 17, 13, 16, 12, 10, 

15, 11, 8, 11, 9, 8) 

>exp<- data.frame(treat, treatment = fac, response = yield) 

> mod <-aov(response ~ treatment, data = exp) 

> summary(mod) 

 

OUTPUT 

DfSum SqMean SqF value Pr(>F) 

treatment 4 155.2 38.80 11.19 0.000208 *** 

Residuals 15 52.0 3.47 

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Inference: There is significant difference between the 

varieties. 

 

Randomized Complete Block Design (RCBD) 

In field trial, if the whole of the experimental area is not 

homogeneous and the fertility gradient is only in one 

direction, then a simple method of controlling the variability 

of the experimental material consists in stratifying or 

grouping the whole area into relatively homogeneous strata or 

sub-groups perpendicular to the direction of the fertility 

gradient. Now if the treatments are applied at random to 

relatively homogeneous units within each strata or block and 

replicated over all the blocks, the design is a Randomised 

Block Design. 

A Randomized Complete Block Design (RCBD) is defined by 

an experiment whose treatment combinations are assigned 

randomly to the experimental units within a block. 

Generally, blocks cannot be randomized as the blocks 

represent factors with restrictions in randomization such as 

location, place, time, gender etc. 

In this design the experimental blocks divided into 

homogeneous blocks. Within the blocks it will be 

homogeneous and between the blocks it is heterogeneous. 

Completely randomize block design means that every block 

has all treatments and the treatments are randomizing with all 

blocks. 

 

The linear statistical model is 

 

Yij = µ +  

 

Where 

  = ith treatment effect 

  = jth block effect  

 = Error 

 

Model includes additional additive block effect 

In RBD, no restrictions are placed on the number of 

treatments or the number of replicates. Here statistical 

analysis is simple, rapid and straight forward. Moreover, the 

error of any treatment can be segregated and any number of 

treatments may be omitted from the analysis without 
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complicating it. RBD has been shown to be more efficient or 

accurate than CRD for most types of experimental works.  

If blocks are not homogeneous RBD may give misleading 

results. It is not suitable for large number of treatments 

because in that case the block size will increase and it may not 

be possible to keep large blocks homogeneous. In RBD if the 

data on more than two plots is missing, the statistical analysis 

becomes quite difficult and complicated.  

Randomized block design is most useful in conditions in 

which the experimental material is heterogeneous and it is 

possible to divide the experimental material into 

homogeneous groups of units or plots called blocks or 

replications. 

It is mostly used in agricultural field experiments, where soil 

heterogeneity may be present due to soil fertility gradient, and 

in clinical trials on animals, where the animals (experimental 

units) vary in age, breed, initial body weight, and so on. 

Example: The yields of 6 varieties of crop in pounds along 

with the plan of the experiment are given below. The number 

of blocks is 5, plot size is 1/20 acre and the varieties have 

been represented by A, B, C, D, E and F (Gupta S.C. and 

Kapoor V.K., 2014) [3] 

 

Block I 
D 

17 

F 

70 

A 

20 

C 

12 

B 

9 

E 

28 

Block II 
B 

12 

E 

26 

D 

10 

C 

15 

A 

26 

F 

62 

Block III 
E 

23 

C 

15 

F 

56 

A 

30 

D 

20 

B 

10 

Block IV 
A 

28 

B 

9 

E 

35 

F 

64 

D 

23 

C 

14 

Block V 
F 

75 

D 

2 

E 

3 

C 

14 

B 

7 

A 

23 

 

R codes 

>block <- factor(rep(c("Block I", "Block II", "Block III", 

"Block IV", "Block V"), each = 6)) 

> treat <- factor(rep(c("A", "B", "C", "D", "E", "F"), each = 

5)) 

> block 

OUT PUT 

[1] Block I Block I Block I Block I Block I Block I Block II 

Block II Block II Block II 

[11] Block II Block II Block III Block III Block III Block III 

Block III Block III Block IV Block IV 

[21] Block IV Block IV Block IV Block IV Block V Block V 

Block V Block V Block V Block V 

Levels: Block I Block II Block III Block IV Block V 

>y <- c(17, 70, 20, 12, 9, 28, 12, 26, 10, 15, 26, 62, 23, 15, 56, 

30, 20, 10, 28, 9, 35, 64, 23, 14, 75, 2, 3, 14, 7, 23) 

> # y is the yield 

> results <- data.frame(y, block, treat) 

> 

> fit <- aov(y ~ treat+block, data = results) 

> summary(fit) 

 

OUTPUT 

DfSum SqMean SqF value Pr(>F) 

treat 5 3672 734.4 2.298 0.0837 . 

block 4 1660 415.0 1.299 0.3043 

Residuals 20 6392 319.6 

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Inference: There is no significant difference between the 

blocks and treatments. 

 

Latin Square Design (LSD) 

The major feature of the Latin square (LS) design is its 

capacity to simultaneously handle two known sources of 

variation among experimental units. It treats the sources as 

two independent blocking criteria, instead of only one as in 

the RCB design. The two-directional blocking in a LS design, 

commonly referred to as row-blocking and column-blocking, 

is accomplished by ensuring that every treatment occurs only 

once in each row-block and once in each column-block. This 

procedure makes it possible to estimate variation among row-

blocks as well as among column-blocks and to remove them 

from experimental error. 

When the heterogeneity is existing in all the direction this 

design is appropriate. The block can be made in two 

directions along the rows and columns. In the Latin Square 

matrix each ‘treatment’ appears once in each row and once in 

each column. Randomisation of the treatments, however, is 

basic to this design. Latin square design is said to be standard 

latin square if first row and first column is in natural order. 

Linear model for Latin Square Design is 

 

Yijk = µ +  

 

Where, µ = overall mean 

 = effect of ith row 

 = effect of jth row 

 = effect of kth column 

 = Error term 

 

Some of the cases where the LS design can be 

appropriately used are 

1. Field trials in which the experimental area has two 

fertility gradients running perpendicular to each other, or 

has a unidirectional fertility gradient but also has residual 

effects from previous trials. 

2. Laboratory trials with replication over time such that the 

difference among experimental units conducted at the 

same time and among those conducted over time 

constitute the two known sources of variability. 

3. Insecticide field trials where the insect migration has a 

predictable direction that is perpendicular to the dominant 

fertility gradient of the experimental field. 

 

Example: Below are given the plan and yields in pounds per 

plot of a 5 × 5 Latin square experiment on the wheat crop 

carried out for testing effects of five manorial treatments A, 

B, C, D and E. A denoting control (or no treatment). 

 
B 

15 

A 

8 

E 

17 

D 

20 

C 

17 

A 

9 

D 

21 

C 

19 

E 

16 

B 

13 

C 

18 

B 

12 

D 

23 

A 

8 

E 

17 

E 

18 

C 

16 

A 

10 

B 

15 

D 

23 

D 

22 

E 

15 

B 

13 

C 

18 

A 

10 
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R Codes 
> row<-c(rep("A",5), rep("B",5), rep("C",5), rep("D",5), rep("E",5)) 

> col<-c(rep(c("01","02", "03", "04", "05"), 5)) 

> rep<-c("B", "A", "E", "D", "C", "A", "D", "C", "E", "B", "C", "B", 

"D", "A", "E", "E", "C", "A", "B", "D", "D", "E", "B", "C", "A") 

> treat<-c(15, 8, 17, 20, 17, 9, 21, 19, 16, 13, 18, 12, 23, 8, 17, 18, 

16, 10, 15, 23, 22, 15, 13, 18, 10) 

> y<-data.frame(col,row,rep,treat) 

>matrix(y$rep,5,5,byrow = T) 

OUTPUT 

[,1] [,2] [,3] [,4] [,5] 

[1,] "B" "A" "E" "D" "C" 

[2,] "A" "D" "C" "E" "B" 

[3,] "C" "B" "D" "A" "E" 

[4,] "E" "C" "A" "B" "D" 

[5,] "D" "E" "B" "C" "A" 

> matrix(y$treat,5,5,byrow = T) 

OUTPUT 

[,1] [,2] [,3] [,4] [,5] 

[1,] 15 8 17 20 17 

[2,] 9 21 19 16 13 

[3,] 18 12 23 8 17 

[4,] 18 16 10 15 23 

[5,] 22 15 13 18 10 

>yfit<-lm(treat~row+rep+col,y) 

>anova(yfit) 

 

OUTPUT 

Analysis of Variance Table 

 

Response: treat 

DfSum SqMean SqF value Pr(>F) 

row 4 3.04 0.760 0.8201 0.53670 

rep 4 454.64 113.660 122.6547 1.27e-09 *** 

col 4 14.24 3.560 3.8417 0.03105 * 

Residuals 12 11.12 0.927 

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Inference: 

1. There is no significant difference between the rows 

2. There is significant difference between replications 

3. There is significant difference between columns  

 

Split – plot Design 

In field experiments certain factors may require larger plots 

than for others. For example, experiments on irrigation, tillage 

etc. requires larger areas. On the other hand, experiments on 

fertilizers etc. may not require larger areas. To accommodate 

factors which require different sizes of experimental plots in 

the same experiment, split plot design has been evolved.  

In this design larger plots are taken for the factor which 

requires larger plots. Next each of the larger plots is split into 

smaller plots to accommodate the other factor. The different 

treatments are allotted at random to their respective plots. 

Such arrangement is called split plot design. In split plot 

design the larger plots are called main plots and smaller plots 

within the larger plots are called as sub plots. The factor 

levels allotted to the main plots are main plot treatments and 

the factor levels allotted to sub plots are called as sub plot 

trearments. 

 

Layout and analysis of variance table 

First the main plot treatment and sub plot treatment are 

usually decided based on the needed precision. The factor for 

which greater precision is required is assigned to the sub 

plots. 

The replication is then divided into number of main plots 

equivalent to main plot treatments. Each main plot is divided 

into subplots depending on the number of sub plot treatments. 

The main plot treatments are allocated at random to the main 

plots as in the case of RCBD. Within each main plot the sub 

plot treatments are allocated at random as in the case of 

RCBD. Thus randomization is done in two stages. The same 

procedure is followed for all the replications independently. 

The analysis of variance will have two parts, which 

correspond to the main plots and sub-plots. For the main plot 

analysis, replication × main plot treatments table is formed. 

From this two-way table sum of squares for replication, main 

plot treatments and error (a) are computed. For the analysis of 

sub-plot treatments, main plot × sub-plot treatments table is 

formed. From this table the sums of squares for sub-plot 

treatments and interaction between main plot and sub-plot 

treatments are computed. Error (b) sum of squares is found 

out by residual method. 

Linear Statistical model for Split Plot Design is 

 

 
 

Where,  = overall mean 

 = effect of ith main plot 

 = effect of jth main plot 

 = Error term related to main plot 

 = Effect of kth sub plot 

 = effect of ith main kth sub plot (Interaction) 

 = error associated with sub plot 

 

In split plot design, an increased precision is attained on the 

sub plot treatments and the interaction between sub plot and 

main plot treatments. It is statistically more efficient.  

Split plot design is used when the factorial treatment structure 

has two levels of experimental units. In this case, two levels 

of randomization will be applied to assign experimental units 

to treatments. 

 

R codes 

Example: A researcher was interested to study the spacing 

and seedling (4 types of spacing, 5 kinds of seedlings with 

three replications). Spacing were kept in the main plot and 

seedling in subplots. (Kailasam C. and GangaiSelvi R., 2010) 

[4] 

 

install. Packages ("agricolae") library (agricolae) library 

(tidyverse) 

>mod.aov<- aov(Yield ~ Spacing*Seedling + Error 

(Seedling/Block), data = read.csv ("SPLIT PLOT. csv", 

header = TRUE)) > summary (mod.aov) 

 

Out Put 

Error: Seedling Df Sum Sq Mean Sq 

Seedling 4 369.7 92.44 

Error: Seedling: Block 

Df Sum Sq Mean SqF value Pr(>F) 

Residuals 10 7.817 0.7817 

Error: Within 

DfSum SqMean SqF value Pr(>F) 

Spacing 3 7.653 2.5510 2.943 0.0489 * 

Spacing:Seedling12 1.201 0.1001 0.115 0.9998 

Residuals 30 25.999 0.8666--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Inference: Spacing shows significant difference in the yield 

level. 

 

Strip – plot design 

The strip plot design is especially suited for a two – factor 

experiment in which the desired precision for measuring the 

interaction effect between the two factors is higher than that 

for measuring the main effect of either one of the two factors. 

This is accomplished with the use of three plot sizes: 

1. Vertical strip plot for the first factor – the vertical factor. 

2. Horizontal strip plot for the second factor – the horizontal 

factor. 

3. Intersection plot for the interaction between the two 

factors. 

 

The vertical – strip plot and horizontal – strip plot are always 

perpendicular to each other. However, there is no relationship 

between their sizes, unlike the case of main plot and sub plot 

of the split – plot design. The interaction plot is the smallest 

plot. 

In a strip plot design, the degrees of precision associated with 

the main effects of both factors are sacrificed in order to 

improve the precision of the interaction effect. 

The analysis is carried out in 3 parts 

• Vertical strip analysis 

• Horizontal strip analysis 

• Interaction analysis 

 

Linear statistical model for Strip Plot Design is 

 

 
 

Where, = Over all mean 

 = effect of ith main plot 

 = effect of jth main plot 

 = Error term (1) 

 = effect of kth sub plot 

 = Error term (2) 

 = effect of jth main kth sub plot (Interaction) 

 = Error (3) 

 

The strip plot design is specifically suited for two factor 

experiment in which the desired precision for measuring the 

interaction effects between the two factors is higher than that 

of the main effect of two factors. 

In strip plot design the interaction is tested with more 

precision. 

 

R codes 

The analysis of variance of a strip plot design is divided into 

three parts. They are the horizontal factor analysis, vertical 

factor analysis and the interaction analysis. 

 

Example: The researcher wants to find the efficacy of 3 

different sources of organic manure at 4 irrigation schedule. 

An experiment was conducted in strip plot with 3 replications. 

Yield in ton per hectare has given. Find the best irrigation 

level and best manure and its combination. (Kailasam C. and 

Gangai Selvi R., 2010) [4] 

 

>library(agricolae) 

> library(datasets) 

> data <- read.csv("K:/D 

drive/PhD/ASHWINI_ARTICLE/STRIP 

PLOT/Stripplot.csv") 

> View(data) 

> head(data) 

Replication Manure Irrigation Yield 

1 1 M1 I1 11.2 

2 1 M1 I2 10.2 

3 1 M1 I3 14.5 

4 1 M1 I4 12.3 

5 1 M2 I1 11.8 

6 1 M2 I2 10.9 

>str(data) 

'data.frame': 36 obs. of 4 variables: 

$ Replication: int 1 1 1 1 1 1 1 1 1 1 ... 

$ Manure : chr "M1" "M1" "M1" "M1" ... 

$ Irrigation : chr "I1" "I2" "I3" "I4" ... 

$ Yield : num 11.2 10.2 14.5 12.3 11.8 10.9 16.2 13.5 11 9.5 

... 

>as.factor(data$Manure) 

[1] M1 M1M1M1 M2 M2M2M2 M3 M3M3M3 M1 

M1M1M1 M2 M2M2M2 M3 M3M3M3 M1 M1M1M1 M2 

M2M2M2 M3 M3M3M3 

Levels: M1 M2 M3 

>as.factor(data$Irrigation) 

[1] I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 

I3 I4 I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4 

Levels: I1 I2 I3 I4 

> model <- with(data, strip.plot(replication, Manure, 

Irrigation, Yield)) 

 

Out put 

ANALYSIS STRIP PLOT: Yield 

Class level information 

 

Manure  : M1 M2 M3 

Irrigation  : I1 I2 I3 I4 

Replication  : 1 2 3 

Number of observations: 36 

model Y: Yield ~ Replication + Manure + Ea + Irrigation + 

Eb + Irrigation:Manure + Ec 

 

Analysis of Variance Table 

Response: Yield 

DfSum Sq Mean SqF value Pr(>F) 

Replication 2 0.065 0.0325 

Manure 2 32.382 16.1908 733.17 7.401e-06 *** 

Ea 4 0.088 0.0221 

Irrigation 3 83.263 27.7544 715.39 4.735e-08 *** 

Eb 6 0.233 0.0388 

Irrigation:Manure 6 10.669 1.7782 37.62 4.241e-07 *** 

Ec12 0.567 0.0473--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

cv(a) = 1.2%, cv(b) = 1.6%, cv(c) = 1.8%, Mean = 12.075 

Inference: There is highly significant difference between the 

manures, irrigation schedule and combination of manure + 

irrigation. 

 

Conclusion 

Investigation or experimentation is fundamental part of 

agricultural research. Here, designs of experiment play salient 

role to realize the reaction of inputs on output of an 

experiment. This article provides R code for evaluating 
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different experimental designs to ease the researcher to 

continue with excellence in agricultural research. Many 

agricultural research problems have been incorporated to 

establish analysis of designs with R codes.  
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