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Abstract 

The purpose of this paper is to establish the validity of a bootstrap least square estimate of a polynomial 

regression model exhibiting an autoregressive fractionally integrated moving average ARFIMA (p,d,q) 

errors. Under standard conditions on the regression parameters and the error components, the bootstrap is 

shown to be valid. In other words, for a p×1 vector β of unknown parameters, �̂�𝑚 a ’modified’ least 

square estimate of β, �̂� 
∗a bootstrap estimate of β, and C ∈ 𝑅𝑘  such that C’(�̂�𝑚  −β) has finite variance, it is 

shown that the distribution of C’(�̂� 
∗ − �̂�𝑚) converges to that of C’(�̂�𝑚  −β), uniformly in C. This work is 

an extension of that of Freedman (1981) and Eck (2018) to the case where the error term is a strongly 

dependent time series. 
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1. Introduction 

The linear regression model is an important tool in statistical analyses in which we study the 

effects of explanatory variables or covariates on a response variable. Regression analysis is 

primarily used for predicting values of the response variable at interesting values of the 

predictor variables, discovering the predictors that are associated with the response variable, 

and estimating how changes in the predictor variables affects the response variable (Eck, 2018) 

[6]. Following the introduction of the bootstrap approximation technique by Efron (1979)  [7], the 

first systematic treatments of bootstrapping of regression models was probably the work of 

Freedman (1981) [9] in which the validity of bootstrapping of the coefficient of ”regression 

models” (where the design matrix is not random) and that of ”correlation models” (where the 

design matrix is allowed to be random) are established. During subsequent years Shorack 

(1982) [16], Freedman and Peter (1984) [10], Weber (1984) [19], Wu (1986), Shao (1988) [15], 

Efron (1991) [8], and others have rigorously expanded the applicability of the bootstrap to 

various aspects of regression models. 

Shorack (1982) [16] established the validity of bootstrap for robust M-estimates of a linear 

regression in which the error terms are independent and identically distributed (iid) random 

variables. Freedman and Peter (1984) [10] studied the application of bootstrap in estimating 

standard errors for regression coefficients obtained by constrained generalized least squares 

with an estimated covariance matrix where the errors are assumed to be iid. Weber (1984)  [19] 

examined bootstrapping of functions of the parameters of regression models with iid errors. 

Wu (1986) considered three bootstrap methods in estimating the variance of least square 

estimators of a regression model with uncorrelated errors. Shao (1988) [15] investigated the 

application of the jackknife and the bootstrap in estimating the bias and variance of the 

parameter of a linear model when the error terms are independent and heteroscedastic. Edron 

(1991) discussed the estimation of regression percentiles 

More recently, Eck (2018) [6] extended the work of Freedman (1981) [9] to multivariate linear 

regression for the case where the error terms are independent. All of the above works on the 

application of bootstrap to regression models have one thing in common: they all require the 

error terms to be independent.  
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Among the few works in the literature on bootstrapping linear 

regression models with dependent error structures are Stute 

(1995) [18], McKnight et al. (2000) [14], Aga (2007) [1], and Aga 

(2023b) [2]. Stute (1995) [18] and McKnight et al. (2000) [14] 

both deal with bootstrapping regression models with short 

memory auto-regressive (AR) errors. Although Aga (2007) [1] 

and Aga (2023b) [2] consider bootstrapping of linear 

regression models with long memory errors, both of them deal 

with bootstrapping the variance parameters of the error 

components, not the regression parameter β. This paper builds 

on the methods presented by Freedman (1981) [9] and Eck 

(2018) [6] and investigates the validity of bootstrap procedure 

as it is applied to the regression coefficient β of a polynomial 

regression model whose error component is the well-known 

long memory ARFIMA (p,d,q) errors. 

 

Consider a polynomial regression model with long memory 

 

Yt = β0 + β1t + β2t2 + ...βqtq + 𝜀𝑡  =∑ 𝛽𝑖𝑡
𝑖𝑟

𝑖=0
 + 𝜀𝑡  (1.1) 

 

where {𝜀𝑡, t ≥ 1} is a stationary, Gaussian, and long memory 

discrete time series with mean zero and and spectral density 

fθ(λ) for λ ∈ (−π, π), where θ = (θ1, θ2, ..., θm)′ ∈ Rm and 

 

fθ(λ) = O(|λ|−2d−δ) (1.2) 

 

as |λ| → 0, ∀δ > 0, d ∈ (0,1/2), and θ1 = d, referred to as the 

”long-memory parameter” of the process (see Andrews et al. 

(2006) [3]. 

Given a finite sample of the process, (1.1) may be written in 

matrix notation as 

 

Y = Zβ + 𝜀 

  (1.3) 

 

where (Y1, ..., Yn)′ and (𝜀1, ..., 𝜀𝑛)′ are n × 1 vectors, β = (β0, ..., 

βr) is (r + 1) × 1, and the design matrix Z given by Z = [Z(1), 

..., Z(r+1)] and Z(j) = (1, 2j−1, ..., n(j−1))′, j = 1,...,r + 1. We assume 

that Z has the full rank (r + 1), where (r + 1) ≤ n. 

Let Σ = γε(s,t) be the covariance function of 𝜀𝑡. If the error 

term 𝜀𝑡  is assumed to be a white noise, then the ordinary least 

squares estimate �̂� of β is given by 

 

�̂� = (Z′Z)−1Z′Y.         (1.4) 

 

in which case γε(s, t) = 0 for s ≠ t, and γε(t, t) = σ2, 

independent of t. In our current model the error term 𝜀𝑡  is a 

long memory time series and therefore, using (1.4) is 

inappropriate (Shumway R. H. et al. (2017) [17]. 

The most well-known model for long-memory processes {𝜀𝑡} 

satisfying (1.2) is the autoregressive fractionally integrated 

moving average ARFIMA (p,d,q) process introduced by 

Hosking (1980) [12] and Grangr et al. (1981) and defined by 

 

ϕ(B)𝜀𝑡  = θ(B)(1 − B)−dϵt, (1.5) 

 

where B is the back-shift operator, ϕ(B) = 1+ϕ1B+ … +ϕpBp 

and θ(B) = 1+θ1B+ ... + θqBq are autoregressive and moving-

average operators, ϕ(B) and θ(B) have no common roots, 𝑑 ∈

(0, 1

2
), and (1 − 𝐵)−𝑑 defined by the binomial formula 

(1 − 𝐵)−𝑑=∑ 𝜂𝑗𝐵𝑗∞
𝑗=0 , where 

 

,        (1.6) 

and Γ is the gamma function, and ϵt is a white noise sequence 

with finite variance σ2. Let π(B) = (1 − B)dθ(B)−1ϕ(B). Then, 

multiplying both sides of (1.5) by (1 − B)dθ(B)−1 we obtain 

 

π(B)𝜀𝑡  = ϵt (1.7) 

 

and consequently, (1.3) can now be transformed to a classical 

linear model with a white noise errors having the form 

 

�̃� = 𝑍β + ϵ,          (1.8) 

 

where �̃� = π(B)Y, 𝑍 = π(B)Z, and ϵ = (ϵ1, ..., ϵn). 

Therefore, the modified least squares estimate �̂�𝑚  of β based 

on (1.8) is given by 

 

�̂�𝑚  =(𝑍′𝑍)
−1

𝑍′�̃� (1.9) 

 

and the residual vector 𝜖̂ = (𝜖1̂, ..., 𝜖�̂�) is given by 

 

𝜖̂ =�̃� – 𝑍�̂�𝑚. (1.10) 

 

The remainder of the paper proceeds as follows. In section 2 

we present the bootstrap procedure proposed for our model. In 

section 3 we define the Mallows metric that is vital in proving 

the main result and state and prove a number of lemmas 

associated with it. In section 4 we state and prove the main 

theorem about the validity of the bootstrap procedure 

described in section 2. Section 5 presents a brief conclusion. 

 

The Bootstrap Procedure 

The main problem in finding �̂�𝑚 as given in (1.9) is that we 

do not typically know the behavior of the error term 𝜀𝑡  and 

hence the coefficient π(B) in (1.8) is not predetermined. An 

easy way to tackle this problem was first presented in 

Cochrane et. al (1949) and with the aid of the emergence of 

cheap computing, the technique is modified and presented in 

Algorithm 1 below. 

 

Algorithm 1 

 
1. First, run an ordinary regression of Yt on Zt and compute 

the ordinary least square estimate �̂� = (Z′Z)−1Z′Y as if the 

errors 𝜀𝑡  are uncorrelated. Retain the residuals 𝜀�̂� = 𝑌𝑡 =
∑ 𝛽𝑖𝑡

𝑖𝑟
𝑖=0 . 

2. Fit ARFIMA (p,d,q) to the errors 𝜀�̂�  and find the 

estimates Θ = (�̂�2, �̂�, �̂�, �̂�) and let 𝜖�̂�  be an estimate of ϵt 

given in (1.5). 

3. Let �̂�(B) = (1 − B)d �̂�(B)−1�̂�(B) be an estimate of π(B) = 

(1 − B)dθ(B)−1ϕ(B) computed using the estimated 

parameters in step 2 above. 

4. Compute a modified least squares estimate �̂�𝑚  of the 

regression model with ARFIMA (p,d,q) errors using (1.9) 

and replacing π(B) by �̂�(B) from step 3 above. 

5. Perform residual analysis on 𝜖�̂�  for whiteness, and adjust 

the model if necessary. 

 

Now we turn our focus to the main purpose of this paper, that 

is, to describe a bootstrap procedure of obtaining an estimate 

�̂�∗ of β and establish that, under mild conditions, the bootstrap 

approximation is valid. 

Bootstrapping is one of the different re-sampling techniques 

in which a series of random samples are drawn a large 

number of times with replacement from an original sample Y 

obtained from the population of interest. The statistic of 
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interest is then calculated from each of the bootstrap samples 

and an approximate of the sampling distribution of the 

statistic is obtained from the calculated values. 

In this section we describe a bootstrap procedure for 

estimating the vector of unknown parameters β of the 

regression model (1.3). Let Y = (Y1, ..., Yn) be a sample from 

our linear regression model with strongly dependent errors as 

described in section 1. In a regression model with 

deterministic design it is appropriate to resample residuals 

(Freedman (1981) [9], Eck (2018) [6]. Let 𝜖̂ = (𝜖1̂, ..., 𝜖�̂�) be a 

column n-vector of observable residuals estimated as 

described in Algorithm 1 and let 𝜖̅ = ∑ 𝜖�̂�
𝑛
𝑖=1 . Let �̂�𝑛 be the 

empirical distribution of the centered residuals, assigning 

mass 1/n to each 𝜖�̂� − 𝜖̂, for i = 1, ..., n. Given Y = (Y1, ..., Yn), 

let 𝜖∗ = (𝜖1
∗, … , 𝜖𝑛

∗ ) be conditionally independent, drawn from 

the common distribution �̂�𝑛  and let 

 

�̃�∗= �̂� (B)Z�̂�𝑚  + ϵ∗        (2.1) 

 

where �̂� and �̂�𝑚  are as computed in Algorithm 1. Then, a 

procedure to compute a bootstrap estimate �̂�∗ of β can be 

described by the following algorithm:  

 

Algorithm 2 

1. Set B and initialize 𝑏 = 1. 
2. Resample residuals 𝜖�̂� − 𝜖 ,̅ 𝑖 = 1, … , 𝑛 from �̂�𝑛, with 

replacement, and compute let 𝜖�̂�
∗ = (𝜖1̂𝑏

∗ , … , 𝜖�̂�𝑏
∗ ); store 

𝜖�̂�
∗ . 

3. Compute �̃�𝑏
∗= �̂� (B)Z�̂�𝑚  + 𝜖�̂�

∗ . 

4. Compute �̂�𝑏
∗ =(𝑍′�̃�)

−1
𝑍′�̃�𝑏

∗; store �̂�𝑏
∗, and set b = b + 1. 

5. Repeat steps 2-4 (B − 1) times. 

6. Compute �̂�∗ =
1

𝐵
∑ �̂�𝑏

∗𝐵
𝑏=1  and 𝜖̂∗ = (𝜖1̂

∗, … , 𝜖�̂�
∗ ) where 

𝜖�̂�
∗ =

1

𝐵
∑ 𝜖�̂�𝑏

∗𝐵
𝑏=1  for i = 1, ..., n. 

 

The Mallows Metrics 

We present a Mallows metric (Mallows, 1972) as a central 

tool to prove the main results of this paper. The Mallows 

metrics for probabilities in Rk, k ≥ 1, relative to Euclidean 

norm was the key ingredient needed to establish the validity 

of the residual bootstrap approximation for uni-variate linear 

regression (Bickel et al., (1981) [4], Freedman, (1981) [9] and 

that of a multivariate linear regression (Eck, D. J., (2018) [6], 

both with white noise errors. 

Under the condition that �̂�(B) can be estimated and be used in 

the bootstrap approximation, we can now state the following 

assumption about the model (1.8). 

• A1. The n×(r +1) matrix 𝑍 is not random and has the full 

rank (r +1), where (r + 1) ≤ n.. 

• A2. The components ϵ1 ,..., ϵn of the error term ϵ in (1.8) 

are independent with unknown common distribution F 

and unknown finite variance σ2. 

 

Let P = 𝑍′𝑍. Then P is positive definite and therefore, it has a 

unique positive definite square root; that is √𝑃. �̂�𝑚  has mean 

β and variance covariance matrix σ2P −1. Suppose the 

transformed regression (1.8) satisfy assumptions A1 and A2. 

Let ℱ𝑃 and 𝒢𝑃  be two alternate distributions of √𝑃(�̂�𝑚  − β), 

when F and G, respectively, are alternate distribution of the 

ϵ′s. In practice F is the distribution of the residuals and G is 

the distribution of the centered residuals. Likewise, if C is a (r 

+ 1) × 1 coefficient vector, let ℱ𝐶and 𝒢𝐶, respectively, denote 

the exact alternate distributions of C’(�̂�𝑚− β), normalized so 

that C′(�̂�𝑚− β) has variance σ2. It follows that 

C’(𝑍′𝑍)−1C = 1.         (3.1) 

 

We shall define the Mallows metric for probabilities in Rk and 

state some results needed in our current set up. 

 

Definition 3.1. Let X and Y be random vectors in Rk and let FX 

and FY represent their corresponding probability distributions. 

The Mallows metric between FX and FY is given by 

 

  (3.2) 

 

where the infimum is taken over all random vectors X, Y ∈ Rk 

and ||·|| is the Euclidean norm. 

Lemma 3.2. Let F and G be two possible alternate 

distributions of the errors ϵ given in (1.8). Assume that both F 

and G have mean 0 and finite variance. Then,  

 

(a) ρ2[ℱ𝑃  , 𝒢𝑃  ]2 ≤ (r + 1)ρ2(F,G)2. 

 

(b) ρ2[ℱ𝐶, 𝒢𝐶]2 ≤ (r + 1)ρ2(F,G)2. 

 

Proof 

Let ϵiF be independent having distribution F and let ϵF be 

the n×1 column vector with components ϵiF . That is, ϵF = 

(ϵ1F , ..., ϵnF). Similarly, let ϵiG be independent having 

distribution G and let ϵG be the n × 1 column vector with 

components ϵiG. Let A be an arbitrary (r +1)×n matrix. 

Let ℱ𝐴 be the distribution of AϵF , and let 𝒢𝐴 be the 

distribution of AϵG. Then by Lemma 8.9 of Bickel et. al 

(1981) [4] we have 

 

ρ2[ℱ𝐴, 𝒢𝐴]2 ≤ trace(AA′)ρ2(F,G)2. 

Moreover, 
(3.3) 

 

√𝑃(�̂�𝑚 − 𝛽) = √𝑃((𝑍′𝑍)−1𝑍′�̃� − 𝛽) 

 

 = √𝑃((𝑍′𝑍)−1𝑍′(𝑍𝛽 + 𝜖) − 𝛽) 

 

 = √𝑃((𝑍′𝑍)−1𝑍′𝑍𝛽 + √𝑃(𝑍′𝑍)−1𝑍′𝜖) − 𝛽)  

 

 = (√𝑃)−1𝑍′𝜖,           (3.4) 

 

where the second equality holds because �̃� is replaced by 𝑍β+ 

ϵ (from (1.8)) and the last equality holds because 

𝑍′𝑍 𝑖𝑠 replaced by P. Now, replacing the matrix A in (3.3) by 

(√𝑃)−1𝑍′ we obtain 

 

 (3.5) 

 

Where I(r+1) is the (r + 1) × (r + 1) identity matrix. Since I(r+1) 

has trace (r + 1) the inequality in part (a) follows. 

 

(a) Replacing A by C′(𝑍′𝑍)−1𝑍′we obtain 

 

AA′ = C’(𝑍′𝑍)−1𝑍′ (C′(𝑍′𝑍)−1𝑍′)′ 
= C’(𝑍′𝑍)−1𝑍′ 𝑍′(𝑍′𝑍)−1 C 

 = C’I(r+1)(𝑍′𝑍)−1C 

= I(r+1) (3.6) 
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where the last equality holds because C’(𝑍′𝑍)−1C= 1 by (3.1). 

This verifies the inequality in part (b) of the lemma. The next 

lemma is a slightly modified version of Lemma 2.2 of 

Freedman (1981) [9] and is used in the proof of Theorem 4.1. 

 

Lemma 3.3. Let Fn be the empirical distribution of ϵ = (ϵ1, ... 

,ϵn) and �̂�𝑛  be the empirical distribution of the centered 

residuals (𝜖�̂�  − 𝜖,̅..., 𝜖�̂�  − 𝜖)̅, where 𝜖 ̅= 
1

𝑛
∑ 𝜖�̂�

𝑛
𝑖=1  . Then 

 

     (3.7) 

 

In the proof of Theorem 4.1, section 4 we will make use of 

the Levy-Prokhorov metric defined as follows. 

 

Definition 3.4: Let α and β be two probability distributions on 

Rk. Then, the Levy-Prokhorov metric ρlp(η,β) is given by 

 

(3.8) 

 

for all compact K ∈ Rk, where Kε = {x ∈ Rk/ ∥x∥ ≤ ε}. 

The next lemma establishes the relationship between the 

Mallows metric and the Levy-Prokhorov metric. 

 

Lemma 3.5. For any two probability measures η and β on Rk 

we have 

 

      (3.9) 

 

Proof. 

For all compact K ∈ Rk and for all ε ≥ 0 we have 

η(K) = P(X ∈ K) 

 

≤ P(Y ∈ Kε) + P(∥X − Y ∥ ≥ ε) (3.10) 

 

 ≤ P(Y ∈ Kε) + ε−αE{∥X − Y ∥α} 

 

where the last inequality holds by Chebychev’s inequality. 

Setting 

 

   
 

and choosing X and Y to minimize the expected value, (3.10) 

becomes 

 

 (3.11) 

 

Similarly, β(K) ≤ η(Kε)+ρα(𝜂, 𝛽)
𝛼

𝛼+1  for all compact K ∈ Rk 

and ε ≥ 0 which proves (3.9). 

Consider a coefficient vector C satisfying (3.1). Let �̂�𝑚  be as 

given in (1.9), 𝜖̂ = (𝜖1̂, ..., 𝜖�̂�) be as computed in Algorithm 1. 

Let �̂�∗  and �̂�∗ = (𝜖1̂
∗, … , 𝜖�̂�

∗ ) be bootstrap estimates computed 

using Algorithm 2 and let 

 

      (3.12) 

 

Where  and let 

 

    (3.13) 

 

Where 

 

 . 

 

The bootstrap principle is that the distribution of C’(�̂�∗ −�̂�𝑚) 

and , which can be computed from the data, 

approximate the distributions of C’(�̂�𝑚  −β) and , 

respectively. The main theorem of this paper given below 

justifies the use of bootstrap in this context for our current 

polynomial regression model with long memory errors as 

given in (1.8). 

 

Validity of the Bootstrap 

Theorem 4.1. Suppose assumptions A1 and A2 hold on the 

regression model (1.8). Let C ∈ Rk satisfy (3.1) and let ℱ𝐶
∗ and 

ℱ𝐶  be the distributions of C’(�̂�∗ −�̂�𝑚) and C’(�̂�𝑚  −β), 

respectively. Likewise, let 𝒢𝐶
∗  and 𝒢𝐶  be the distributions of 

and , respectively. Condition on �̃�1, ..., 

�̃�𝑛, let n → ∞ and assume that if (r + 1) → ∞, then (r + 1)/n 

→ 0. Then 

(a) ρ2(ℱ𝐶
∗  , ℱ𝐶) → 0 uniformly in C. 

(b) The conditional distribution of �̂�∗ converges weakly to σ. 

0 uniformly in C. 

 

Proof. 

(a) Replacing G by �̂�𝑛  in  

 

Lemma 3.2 (b) we have 

 

ρ2(ℱ𝐶
∗ , ℱ𝐶) ≤ ρ2(𝐹, �̂�𝑛)2≤ ρ2(𝐹, 𝐹𝑛)2+ ρ2(𝐹𝑛, �̂�𝑛)2. (4.1) 

 

But ρ2(𝐹𝑛, �̂�𝑛)2→ o by  

 

Lemma 3.3 because (r + 2)/n → o by assumption. On the 

other hand, ρ2(F,Fn) → 0 by Lemma 8.4 of Bickel et. al 

(1981) [4]. This proves (a). We first show that �̂�𝑛
 → σ almost 

everywhere. Let 

 

    (4.2) 

 

where 𝜖 ̅= 
1

𝑛
∑ 𝜖�̂�

𝑛
𝑖=1 . Note that 

 

 (4.3) 

 

where ϵ − 𝜖 ̅is to mean (ϵ1 − ϵ, ..., ϵn−𝜖)̅. Similarly, we have 

 

  (4.4) 
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where 𝜖̂ − 𝜖̂ ̅represents (𝜖�̂� − 𝜖̂,̅ ..., 𝜖�̂� − 𝜖̂)̅ and 𝜖̂ ̅is as given in 

(3.13). Using properties of norms we have 

 

 (4.5) 

 

The last term in (4.5) go to zero almost everywhere by 

Lemma 2.4 of Freedman (1981) [9] and therefore �̂�𝑛  → σn 

almost everywhere. Now, let 

 

    (4.6) 

 

Where 

 ) is as given in (2.1), 𝜖̅∗ = 
1

𝑛
∑ 𝜖𝑖

∗𝑛
𝑖=1 and let 

 𝜎𝑛
∗2

be as given in (3.12). Then condition on �̃�1, ..., �̃�𝑛  and 

utilizing the procedure in (4.5) we obtain 

 

(4.7) 

 

It remains to show that �̂�𝑛
∗ → 𝜎. By Lemma 8.6 of Bickel et 

al. (1981) [4] we have  

 

.  (4.8) 

 

Note that  has distribution �̂�𝑛and ϵi has distribution F. By 

Lemma 2.6 of Freedman (1981) [9] we have 𝜌2(�̂�𝑛, 𝐹) → 0 

almost everywhere and therefore, by Lemma 8.5 of Bickel et 

al. (1981) [4] we have ρ1(𝜖𝑖
∗2

,𝜖𝑖
2) → 0. It follows that �̂�𝑛

∗ → 𝜎. 

This completes the proof of (b). 

(b) follows from (a) and (b) and (3.9). 

 

Corollary 4.2. Suppose assumptions A1 and A2 hold on the 

regression model (1.8). For P =𝑍′𝑍, let ℱ𝑃
∗ and ℱ𝑃be the 

distributions of √𝑃(�̂�∗ −�̂�𝑚) and √𝑃(�̂�𝑚  −β), respectively. 

Likewise, let 𝒢𝑃
∗  𝑎𝑛𝑑 𝒢𝑃 be the distributions of 

√𝑃(�̂�∗ −�̂�𝑚)

�̂�∗  and  

√𝑃(�̂�𝑚 −𝛽)

�̂�
 , respectively. Condition on �̃�1,...,, �̃�𝑛 let r be fixed 

and n → ∞. Then 

 

(a) ρ2(ℱ𝑃
∗  , ℱ𝑃) → 0.  

(b) ρ2(𝒢𝑃
∗  , 𝒢𝑃) → 0. 

  

Proof. This follows from Theorem 4.1 replacing C by √𝑃 

since  √𝑃 satisfies (3.1). 

 

Conclusion 

In this paper we provided a mathematical justification for the 

validity of the bootstrap for estimating the coefficient vector 

of a polynomial regression whose error terms are the most 

well-known long memory time series, namely, the 

autoregressive fractionally integrated moving average 

ARFIMA (p,d,q). Under broad conditions on the polynomial 

regression and standard regularity conditions on long memory 

error component, it is shown that a bootstrap procedure is 

valid. This offers guide for practitioners on utilizing the 

suggested bootstrap procedure of a given regression model 

with the specific long memory series applying techniques 

whose validity is supported by theory. Here the concept of 

validity has the meaning that the bootstrap distribution 

function converges to the asymptotic distribution function 

based on the original observations. As stated earlier, this work 

is an extension of the results by Freedman (1981) [9] and Eck 

(2018) [6], in which bootstrapping of a linear regression model 

with white noise errors is studied, to the case where the error 

terms are the well-known long memory ARFIMA (p,d,q) 

process. The extension is obtained in the following way. 

First, we transform the original model to the case having 

white noise error by multiplying both sides by the polynomial 

π(B) = (1 − B)dθ(B)−1ϕ(B) as shown in (1.8). Second, we 

estimate the parameters of the ARFIMA (p,d,q), compute an 

estimate �̂�(B) of π(B), Compute a modified least squares 

estimate �̂�𝑚  of the regression model, and compute an estimate 

of the white noise 𝜖̂ using Algorithm 1. 

Third, utilizing the estimated parameters we transform 

equation (1.8) to the case where �̃� and 𝑍 can be determined 

from the original model. 

Fourth, we present a procedure of obtaining a bootstrap 

estimate �̂�∗ of β using Algorithm 2. 

Fifth, we defined the Mallows metric and presented three 

related lemmas that are relevant in proving the main result of 

the paper. 

Sixth, we state and prove the validity of the bootstrap 

procedure in Theorem 4.1. 
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