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Abstract
In this paper we investigated the new subclasses of univalent functions with negative coefficient having
fixed point. Necessary and sufficient condition for concern class is obtained. Several geometric
properties like growth theorem, coefficient estimate, convexness, extreme point theorem has been
examined
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Introduction

Let N be class of all analytic functions normalized with conditions f (0) =0 and f'(0) = 1in
the form f (z) = z - ¥, a,z¥, on open unit disc D = {z: | z| < 1}.Let N~ is the subclass of
N, consist of functions which are in the form.

f(2)=z-Yy,a.z" a, =>0(1.1)

on open unit disc D = {z: | z | < 1}.We have studied the class K} (§, &, 8, 9, A, I, w). In concern
with this class we obtained new class K" (¢, a, 8, 9, A, [, u,20) for which f (zo)=z. Silverman [
obtained the subclasses of starlike and convex functions. Namely L"(¢) and H"(¢). Silverman
8 provided the new classes Lj(a, z,) and L (o, z,). These classes consist of the functions in
the form f (2) = a,z - ¥, ai z*.
Ly(o, z,) satisfies a, = 0, T (zo0) = 2o (zo€ (—1, 1), Zo# 0)

1(0, zy) satisfies a;, = 0, f'(z0) = 1 zo€ (—1,1)
1261 studied the class L% (a, 8,7, z,) With certain restriction on «, f,y. This class is collection of
functions in L} (a, 8,y) which fixes point z,. Opoola ' have defined derivative operator. It is
describe as given below.

Definition 1.1
The Opoola differential operator for f (z) in N is denoted by D"(u, «, ¢) f (z) = f(z) (1.2)

D'(w, @, O)f(2)= zD;f(2)=z {f' (2)-2(a- 1) ¢ +(1+ a- u — 1))f(2) (1.3)
D! (1@, )  (2) = 2 Dy (2D (2)) (1.4)

D'(u, @, {)f(2)= 2D (D™, @, {)), N € {1,2.3,......} (1.5)

After some calculation we have: (1 + (k + @ — pu — 1){)"

D', @,{) f(2)= 2 + (1 + (k+ @ — p— 1){)"a,z"* (1.6)

Where{ >20,0<pu <«a
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Also, [ has defined the following operator, known as Ruschweyh differential operator.

Definition 1.2
For f& N, B has defined following Ruschweyh differential operator.

R™: N—N defined by

V4
(1_Z)n+1'

R™(f (2)) = fz)ne NU {0}

=2+ Ye, MHR-10 g 2K (z€U) (1.7)

Where (.) is hadmard product defined in [,
We note that R® f (z) =f (z), R' f (2) =zf (2)

2.ClassK (0% e, 6,9,7,a, 1)

Thange M introduced the class K (0Z e, 8,9, {, a, u) associated with Ruopoola derivative operator. We generalized this class to K
(Ff e 8,9,¢,a,u) having more generalized Ruopoola derivative operator. It is obtained by making convex combination of
Ruschweyh and Opoola derivative operator.

Definition 2.1
For f ¢ N, we define the Ruopoola derivative operator F " as follow

0L (f (2))= (1-t) (D"(u, @, Q) f(z)) +t R"f(z) te [0,1] and n € N U {0}
=z+ Y5 ([1+ (k+a—u—1{*(1 —0) + o™ 10)a,z* (2.1)
We noted that F? f(z)=f(z), F}'f(z)= R "f(z) and F}*f(z)= D "f(z)

Definition 2.2
Aclass K (0% e, 6,9, ¢, a, u) is collection of functions in N~ having.

20500y
(O}
| 28(z<o§(f))’ 5)_(z(05(f))’ 1) | <9(22)
05N 0%(f)

1
Here0 < §<—,0<9 <1,

70 <e< 1l7t>-10 <pu <a,neNU{0}.

N -

In our first attempt for this section we obtained the necessary and sufficient condition for the function in the class K
(0%e,6,9,0,a,p).

Theorem 2.1
If f (2) = z - X,z is in N, then f & K (0Fe,8,9,{,ap) if and only if R ,([1+ (k+a—p—1){"(1 - 0) +
o™k=10)(2e9(k — 8) + (k — (1 =)y, < 2eI(1-6).

Extremal is obtained for the function in the class which are in form

f (Z) =7 2e9(1-96).
k ([1+(k+a-p-1)¢)*(1-0)+0*tK1C)) (29 (k—6)+(k—1)(1-0)

zF (1.1)

Proof. Letf(z) =z- Y7, arzFisinN~.and e,=1+ (k + a —u — 1){.
Assume that
YO (L + (k+ @ — g — D1 = 6) + 0™ 10) (2ed(k — 6) + (k — (1 —9))ay < 2 e 9(1-6)

2(0:(f)' = (05(f) = Li=(1 + (k + a — p — D7 (1 = 0) + 0™ 72C) (1 — k) ay 2"
2(05(f))' = 6(05(f) = Xia([1+ (ke + @ — = DIF(A — 0) + 07720 (8 — k) ayz®

205’ _
. CRGI | = | 2051 ~(©5() |

2(05(f))’ 2(05(f))’ 2e(z(0L(f))' -6(0% - z(0%(f))' - (0%
29( og(f) 5)_( og(f) 1) e(z(05())'=6(05(fN)- 2(05())' - (05(f))

= | 2(05(F)'-(05(f) |
2e(2(03())' 805NN~ 2(05(F))' - (05(f))

~35~
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T2 lef (1-0)+ o™t 1c] (k—1)ayz¥
2e(1-8)z-3 ,[ef (1~0)+ 6T+*~1c][2e(k—8)~ (k—-1)]axzk

LR lef (1-0)+ o™ 1) (k—1)aglz¥|
2e(1-8)|z|-X32, [ef (1-0)+ o™ K~ 1c] [2e (k—6)— (k—1)]ak|z¥|

T2 ,lef (1-a)+ o™ 1c] (le-1)ay
= 2e(1-8)-32,lef (1-0)+ T L] [2e(k—-8)~ (k-1)]ag’

This holds, since by “Maximum modulus theorem”, maximum occurs only at the boundary points of unit circle.

N2, lef (1-a)+ aTHR—1c] (k-1)ay
2e(1-8)-32,[ef (1-0)+ aTHK1c][2e(k—8)— (k—1)]ay

Hence <9

205"
. | OF(f) | <9
- Ze(z(ozm)’ 5)_(z(05<f)>’ 1) '
05N 05N

Therefore, fe K (0% e,68,9,(, a, u)
Now to prove if part we assume that f (z) e K (0% e,6,9,{, a, 1)

20504
(KD |
205N o\ (205U’
Ze( 05 (H) ) ( o5 1)

n9> |

- | 2(05())' ~(05(F) |
2e(z(05())'-8(05(fN)- 2(05(f)'-(05(f)

- | 22 ,lef (1-0)+ aTTR"1c] (k—1)agz*
' 2e(1-0)z-3fL,lef (1-0)+ o RC] 26 (k-8) - (k-D]aszk

SinceRe {z} < z

Y[+ (k+a—p-1){F(1-0)+a ¥~ Loy (1-K) a2 <
2e(l—&)z—([1+(k+a—u—1)(]7(1—U)+07+k_,1;C))(29(k—8)+(k—1))akzk

Letting z tends to 1 through positive part of real axis in unit disc,

a1+ (k+a—p=-13 A-0)+a ™K 730) 1-k) a2 <9
2e(1-8)z—([1+(k+a—u—1){]*(1-0)+aTH5~1C)) (2e(k—8) +(k—1))ayzk

Y1+ (k+a—pu—1DI*(1—0)+0™*C)Red(k — 8) + (k— 1D(1 —9))a, < 2eI(1-5).
Hence proved.

Example 1.1: If fe K (0% e, 6,9, {, a, u) then for k = 2

2e9(1-6)
([1+(k+a—p—1)¢]*(1-0)+a*T5=1C)) (229 (k—8)+(k—1) (1—9))

akS

Extremal is obtained for the function in the form (1.1)

3. Main Results

In this section we introduced the class K (0 e, 8,9, {, a, u, z,). We studied the coefficient bounds, growth theorem, and distortion
theorem for this class.

Definition 3.1. The class K (0% e, 8,9, {, a, u, z,) consist of functions in the class K (0; e, 8,9, {, a, 1) for which f (z,)= z,

Theorem 3.1. A function in the form (1.1) is in K (0% e, 8,9, {, a, u, z,) then
Yo, (L— zk-l)ak <1(3.1)

2e9(1-68)

Here B,= ([1 + (k + a —  — 1){]*(1 — 0) + 07+~ 1C)) (2e9(k — 8) + (k — 1)(1 — 9))
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Converse is true if Y5, z¥~1 1,=0. (3.2)
Proof. Suppose fe K (0% e,8,9,{,a, u, zy)
~f(20)= 2o

— iz =20 LR,z =
w Xie2zs =0

T 0 By
Now fe K (0fe, 6,9, a,u) = Zk:z—zeau—&) L, <1
) 22&9(1 B e —Yiezb M <1

k-1 <
* L= 2(2e19(1 5 %0 )a" =1

Now to prove the converse we assume that (3.1) and (3.2) hold
. _ k-1
* L= 2(2e19(1 5 20 )a" =1

oo -1
<
Y- 22619(1 54 —Yk=2Z  ax s 1

<
Z 2e19(1 %=1

~feK(0Fe, 8,9, a,u)
Suppose ¥p-, zEt a, =0
2N, zE =l

“ 2o~ Loz 26 Wc=20

~ f(z) = 2z
feK(07e6,9,{,a,u,zp)

Example 3.1: A function in the form (1.1) isin K (0% ¢, 8,9, {, a, u, z,), then.

2e9(1-8)
= Bx—2e9(1-8)z&"1

Qg
Here, By= ([1 + (k+ a —u— 1){]*(1 — 0) + a™**"1C))(2ed(k — 8) + (k — 1)(1 — )
Equality is obtained for the function in K (0% e, 8,9, {, a, u, z,) in the form.

- 2e9(1-6) k-1
@)=z Br—2e0(1-0)zk 1 ~ (k=2)

Theorem 3.2: A function in the form (1.1) isin K (0% e,6,9,{,a, 1, zy), thenfor0 < |z| = p < 1

o 2e9(1-8) 2e9(1-6)
PP e (i-0)zg = IT@)|<ptp By—2e9(1-8)zo

Where, B,= ([1 + (k + a — u — DI(1 — 0) + a™1C)) (2e9(k — 8) + (k — 1)(1 — 9))

Proof: Given that a function f in the form (1.1) isin K (0% e, 8,9, {, a, u, z,),
From equation (3.1)

(B, — 2e9(1 — 8)z) Z L < Z(Bk —2e9(1 — 8)20 ¥,
k=2 k=2
e

https://www.mathsjournal.com



https://www.mathsjournal.com/

International Journal of Statistics and Applied Mathematics

< 2e9(1 - 6)

2e9(1-5)

R Yl < - -
Yima e < By—2e9(1-8)zo

Therefore,

IT@) 1< Izl + |21 Bz | L] < p+p? Eia | L

2 2e9(1-6)

S ptp B,—2e9(1-8)zg

On the same way

IT@ 1= |zl = |zI* Eza | L | = p+p® Eia | L

< p- 2 2e9(1-6)
- By—2e9(1-68)zg

Extremal is obtained for the function in K (0% e, §,9, {, a, u, z,), which are in the form.

2e9(1-8)
Bp—2e9(1-8)z§~t

f(2)=z- 72 t>2

atz=p, pe'™

In our next theorem we found the radius of convexness for the class K (0% e, 8,9, (, a, u, z,)

Theorem 3.3. The radius of convexness for the class K (0 e, 8,9,{, a, 1, z) IS R,

Where:

1
_ By k-1
R= infi (k22619(1—6)) k=2)

Proof. Letf (2) e K (0f e, 6,9, a, u, z,).

To find the radius of convexness, we assumed f (z) is convex in |z| < R.
We want to find the value of R such that.

zf''(2)
R{ T+ 1}>0, |zI<R

But,

'@, 4 2" @
o+ 1 1| <1=R{ o2+ 1}>0

Now, f(2) =z - X5, a,z*

2f" (2) = = X k(k — Dayz"*

T, k(k—1)agzk1
1—2,;”:2 kakzk_l

Tor, k(k—Daglz* 1|
1- 2, kag|zk—1|

zf"'(2)
f'(@)

Thr, k(k—Daglz/*~1
1- %2, kag|z]k—1

zf"'(@)

=
<1 '@

<1

Assume that z,

Tir, k(k—Daglz/*1
1- 52, kag|z]k—1

<1
= Y=z k(k — 1)‘1k|z|k_1 <1+XF= akZo"‘l-ZZ‘Lz kak|z|k_1
= Yo kPag |zt X, agzet i<

= Yiea (k22| =20* 1) @) < 1 (3.3)

~3g~
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Asf(z) eK (0 e, 8,9, a,u,z). Therefore using (3.3) we have

oo By _ k-1
Li=2 (2919(1—5) Z )a" =1

Inequality (4.7) is true if

k— k— Bk k—
o (k1217 =205 @i < T (s — 2671
i L2 k=1 _ , k1 Bk k-1 2|,1k-1 Bk
That is k*|z| Z 2eocis) 20 = k*|z| < 209(1-5)
1
By )k—1
<|/————
Hence |Z| (Zeﬁkz(l—c?)

Therefore radius of convexness is

1
_ By (k-1)
R= infy (k22219(1—5))

Conclusion

This paper delves into the investigation of subclasses of univalent functions with negative coefficients having a fixed point.
Through rigorous mathematical derivations, the necessary and sufficient conditions for the concerned class are derived. The paper
explores various geometric properties such as the growth theorem, coefficient estimates, convexity, and extreme point theorem
within this context. The findings contribute to the understanding of univalent functions with negative coefficients and their fixed
points, shedding light on their intricate properties and providing valuable insights into this area of mathematical analysis.
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