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compromise method of imputation 

 
Naveen GP and Manoj Kumar 

 
Abstract 

The analysis of data is complicated when two or more values are missing. Missing data generates bias 

and makes it more difficult to handle and analysis of data, which reduces efficiency. Imputation is a 

method where by imputed values are used to fill the missing values based on the data that is already 

existed and available axillary information. There are various techniques available to impute the values. 

After imputing the missing observations, we obtained a complete data set that can be analysed using 

some traditional methods. Previously imputation procedures like Mean method of Imputation, Ratio 

method of imputation, compromised method of imputation procedures are used in order to impute the 

missing observations. In this study an alternate estimator of population mean using estimator given by 

Singh et al. (2016) under compromised imputation method is given. The expression for bias and mean 

squared error (MSE) up to the first order approximation are derived. An numerical study is also carried 

out in order to compare the efficiency of the estimator with the previously existing estimators. 

 

Keywords: Population mean, auxiliary information, mean method of imputation, ratio method of 

imputation, and compromise imputation 

 

Introduction 

Nonresponses or missing values are common occurrences in sample surveys. Item 

nonresponse and unit nonresponse are the two types of nonresponse. Item nonresponse is deal 

with the imputation method, while unit nonresponse is deal with the weight method. Similarly, 

the most common method for solving missing values is by imputation, which replaces missing 

values using the existing data as a source. Additionally, many researchers have studied the 

auxiliary information available in order to increase the accuracy of population mean estimation 

simple random sampling without replacement (SRSWOR). For example, Cochran applied the 

auxiliary information at the estimation stage and proposed an estimator to estimate the 

population mean. Bahl and Tuteja (1991) [2] first proposed new ratio-type exponential method 

for estimating the mean of population using information on auxiliary variable and they are 

more efficient than the existing estimators. 

Let the mean of the population 𝜋 = {1,2, … , 𝑁} is �̅� =
1

𝑁
∑ 𝑦𝑖

𝑛
𝑖=1 . A sample s of size n is drawn 

from the population by simple random sampling without replacement (SRSWOR) to estimate 

population mean (�̅�). Let the number of responding units be r out of sampled units. The set of 

responding units be R and the remaining non-responding units be Rc. For every units i ∈ R , 

the value of yi is observed and the remaining units i ∈ Rc are missed and have to be imputed 

using the imputation techniques. Here assume that the imputation has carried using the 

available auxiliary information x such that xi, the values x for unit i. is known and it is positive 

for all i ∈ s. The following notations used are are given by Lee et al. (1994) for the case of 

single value imputation. 

If the ith unit requires the imputation, the value of �̂�𝑥𝑖 is imputed where =
∑ 𝑦𝑖i∈ R

∑ 𝑥𝑖i∈ R
 . The data 

after the imputation becomes 

 

𝑦𝑖 = {
𝑦𝑖  𝑖𝑓 i ∈  R

�̂�𝑥𝑖  𝑖𝑓 i ∈  R𝑐  (1) 
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The above imputation method used is known as Ratio method of imputation. The point estimator of population mean under this 

method of imputation is given by  

 

�̅�𝑅𝐴𝑇 = �̅�𝑟

�̅�𝑛

�̅�𝑟

  

 

Where 

 

 �̅�𝑛 =
1

𝑛
∑ 𝑥𝑖𝑖∈𝑠  

 

�̅�𝑟 =  
1

𝑟
∑ 𝑥𝑖

𝑖∈𝑅

 

 

�̅�𝑟 =
1

𝑟
∑ 𝑦𝑖

𝑖∈𝑅

 

 

Another method of imputation is mean method of imputation. In this method the data after imputation becomes 

 

𝑦𝑖 = {
𝑦𝑖  𝑖𝑓 𝑖 ∈ 𝑅

�̅�𝑟 𝑖𝑓 𝑖 ∈ 𝑅𝑐  (2) 

 

The point estimator for the above method of imputation is given by  

 

�̅�𝑀 =
1

𝑟
∑ 𝑦𝑖  𝑖∈𝑅 = �̅�𝑟 

 

Singh and Horn (2000) [15] have another imputation procedure called compromise imputation which is giving more efficient result 

than the other existing imputation procedures. The data after imputation becomes 

 

𝑦𝑖 = {
𝛼

𝑛

𝑟
𝑦𝑖 + (1 − 𝛼)�̂�𝑥𝑖  𝑖𝑓 𝑖 ∈ 𝑅

(1 − 𝛼)�̂�𝑥𝑖  𝑖𝑓 𝑖 ∈  𝑅𝑐
  (3) 

 

The point estimator of the population mean is given by  

 

�̅�𝐶𝑂𝑀𝑃 = 𝛼�̅�𝑟 + (1 − 𝛼)�̅�𝑟

�̅�𝑛

�̅�𝑟

 

 

Singh and Deo (2003) [10] introduced an innovative power transformation estimator for approximating the population mean. When 

applying. their imputation approach, the data exhibit the following format:   

 

𝑦.𝑖 =  {
𝑦𝑖  𝑖𝑓 𝑖𝜖𝑅

�̅�𝑟 [𝑛 (
�̅�𝑛

�̅�𝑟
)

𝛼

− 𝑟]
𝑥𝑖

∑ 𝑥𝑖
𝑛
𝑖𝜖𝑅𝑐

 𝑖𝑓 𝜖𝑅𝑐}  (4) 

 

Where α is an appropriately. Chosen constant, so that the resultant estimator variance is minimum. The point estimator (4) for 

above imputation technique becomes: 

 

�̅�𝑆𝐷 =  �̅�𝑟(
�̅�𝑛

�̅�𝑟

)𝛼 

 

If α = 0 then �̅�𝑆𝐷 =  �̅�𝑟 and if α = 1 then �̅�𝑆𝐷 =  �̅�𝑅𝐴𝑇 , α = 𝜌𝑦𝑥
𝐶𝑦

𝐶𝑥
 

 

1. Theory 

Let us define  

 

휀 =
�̅�𝑟

�̅�
− 1 

 

𝛿 =  
�̅�𝑟

�̅�
− 1 

 

𝜂 =
�̅�𝑛

�̅�
− 1 
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Rao and Sitter (1995) gave the concept of two-phase sampling and the mechanism of that for given r and n we have 

 

E(휀) = E(𝛿) = E(𝜂) = 0 

 

and  

 

E(휀2) = (
1

𝑟
−

1

𝑁
)𝐶2

𝑦, E(𝛿2) = (
1

𝑟
−

1

𝑁
) 𝐶2

𝑥, E(𝜂2)  =  (
1

𝑛
−

1

𝑁
) 𝐶2

𝑥 

 

E(휀𝛿) = (
1

𝑟
−

1

𝑁
)𝜌𝐶𝑦𝐶𝑥, E(𝛿𝜂) = (

1

𝑛
−

1

𝑁
)𝐶2

𝑥, E(휀𝜂) = (
1

𝑛
−

1

𝑁
)𝜌𝐶𝑦𝐶𝑥 

 

Where, 

 

𝐶2
𝑦 =  

𝑆2
𝑦

�̅�2
 

 

𝐶2
𝑥 =  

𝑆2
𝑥

�̅�2
 

 

𝜌 =
𝑆𝑥𝑦

(𝑆𝑥𝑆𝑦)
 

 

The properties (Bias and MSE) of the above discussed imputation methods are as follows, 

1. The bias and MSE of Ratio method of imputation is, 

▪ 𝐵(�̅�𝑅𝐴𝑇) ≈ (
1

𝑟
−

1

𝑛
)�̅�(𝐶2

𝑥 − 𝜌𝐶𝑦𝐶𝑥)  (5) 

▪ 𝑀𝑆𝐸(�̅�𝑅𝐴𝑇) ≈ (
1

𝑛
−

1

𝑁
) 𝑆2

𝑦 + (
1

𝑟
−

1

𝑛
)[𝑆2

𝑦 + 𝑅2
1𝑆2

𝑥 − 2𝑅1𝑆𝑥𝑦]  (6) 

 

2. The bias and MSE of the compromised method of imputation is,  

▪ B(�̅�𝐶𝑂𝑀𝑃)  ≈ (1 − 𝛼)(
1

𝑟
−

1

𝑛
)�̅�(𝐶2

𝑥 − 𝜌𝐶𝑦𝐶𝑥) (7) 

▪ 𝑀𝑆𝐸(�̅�𝐶𝑂𝑀𝑃)  ≈  𝑀𝑆𝐸(�̅�𝑅𝐴𝑇) − (
1

𝑟
−

1

𝑛
) (1 − 𝜌

𝐶𝑦

𝐶𝑥
)

2

�̅�2𝐶2
𝑥  (8) 

 

Where, 

 

𝛼 = 1 − 𝜌
𝐶𝑦

𝐶𝑥
 (Suitable constant to reduce the variance) 

 

3. The bias and MSE of the Singh and Deo (2003) [10] method of imputation is 

▪ B(�̅�𝑆𝐷) = (
1

𝑟
−

1

𝑁
) �̅� [

𝛼(𝛼−1)

2
𝐶𝑥

2 − 𝛼𝜌𝐶𝑦𝐶𝑥]  (9) 

▪ 𝑀𝑖𝑛. 𝑀𝑆𝐸 (�̅�𝑆𝐷) = 𝑀𝑆𝐸(�̅�𝑟𝑎𝑡) − (
1

𝑟
−

1

𝑛
)𝑆2

𝑥 (𝜌𝑆𝑋𝑆𝑌 −
�̅�

�̅�
)

2

  (10) 

 

 

4. Proposed imputation method for missing data 

By using the estimator given by Singh et al. (2016) [11], here we proposed a new estimator for missing data. The data after 

imputation takes as, 

 

𝑌𝑖 = {
𝑘

𝑛

𝑟
𝑦𝑖 + (1 − 𝑘)�̅�𝑟𝑑 𝑖𝑓 𝑖 ∈ 𝑅

(1 − 𝑘)�̅�𝑟𝑑 𝑖𝑓 𝑖 ∈ 𝑅𝑐
  (11) 

 

Where, 

 

𝑑 = �̅�𝑟 (
�̅�𝑛

�̅�𝑟
) 𝑒𝑥𝑝 (

�̅�−�̅�𝑟

�̅�+�̅�𝑟
)  

 

�̅�𝑟 =
∑ 𝑦𝑖

𝑟
𝑖=1

𝑟
 and �̅�𝑟 =

∑ 𝑥𝑖
𝑟
𝑖=1

𝑟
 

 

𝑘 = 1 −
2[𝜌𝐶𝑦𝐶𝑥 − 𝐶𝑦

2]

𝐶𝑥
2  

 

Theorem 3.1 

The point estimator of population mean (�̅�) under proposed method imputation is 
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�̅�𝑝 =  𝑘�̅�𝑟 + (1 − 𝑘)�̅�𝑟 (
�̅�𝑛

�̅�𝑟
) 𝑒𝑥𝑝 (

�̅�−�̅�𝑟

�̅�+�̅�𝑟
)  (12) 

 

Proof: we have  

 

�̅�𝑝 =  
1

𝑛
∑ 𝑦𝑖

𝑖∈𝑠

 

 

=  
1

𝑛
[∑ 𝑦𝑖

𝑖∈𝑅

+ ∑ 𝑦𝑖

𝑖∈𝑅𝑐

] 

 

=
1

𝑛
⌈∑ ⌈𝑘

𝑛

𝑟
𝑦𝑖 + (1 − 𝑘)�̅�𝑟𝑑 ⌉ + ∑ (1 − 𝑘)�̅�𝑟𝑑

𝑖∈𝑅𝑐𝑖∈𝑅

⌉ 

 

=
1

𝑛
[𝑘

𝑛

𝑟
𝑟�̅�𝑟 + (1 − 𝑘)𝑑𝑟�̅�𝑟 + (1 − 𝑘)𝑑(𝑛 − 𝑟)�̅�𝑟] 

 

=
1

𝑛
𝑘

𝑛

𝑟
𝑟�̅�𝑟 +

(1 − 𝑘)

𝑛
𝑑[𝑟�̅�𝑟 + (𝑛 − 𝑟)�̅�𝑟] 

 

= 𝑘�̅�𝑟 + (1 − 𝑘)𝑑 �̅�𝑟 

 

 Then the point estimator is given as  

 

�̅�𝑝 =  𝑘�̅�𝑟 + (1 − 𝑘)�̅�𝑟 (
�̅�𝑛

�̅�𝑟
) 𝑒𝑥𝑝 (

�̅� − �̅�𝑟

�̅� + �̅�𝑟
) 

 

Theorem 3.2 

The bias of the proposed point estimator is given as  

 

𝐵(�̅�𝑝) = �̅�(1 − 𝑘) (
1

𝑟
−

1

𝑁
) 𝐶𝑥 [

3

4
𝐶𝑥 −

1

2
𝜌𝐶𝑦] + (

1

𝑛
−

1

𝑁
) 𝐶𝑥 [𝜌𝐶𝑦 +

1

2
] 𝐶𝑥

2  (13) 

 

Proof: see appendix 1. 

 

Theorem 3.3 

The mean squared error (MSE) of the proposed estimator �̅�𝑝 is given by  

 

𝑀𝑆𝐸(�̅�𝑝) = �̅�2 (
1

𝑟
−

1

𝑁
) [𝐶𝑦

2 + (1 − 𝑘)2 𝐶𝑥
2

4
− (1 − 𝑘)𝜌𝐶𝑦𝐶𝑥]  (14) 

 

Proof: See appendix 2. 

 

5. Efficiency comparison of the proposed estimator 

In the following section the proposed estimator (�̅�𝒑) efficiency is compared with previous existing estimators i.e., ratio and 

compromised estimator by using MSE and an estimator with preferred smaller value of MSE.  

 

6. Comparison of proposed estimator with Ratio estimator 

From the expressions (14) and (6), we have 𝑀𝑆𝐸(�̅�𝑝) <  𝑀𝑆𝐸(�̅�𝑅𝐴𝑇) when 

 

�̅�2 (
1

𝑟
−

1

𝑁
) [𝐶𝑦

2 + (1 − 𝑘)2 𝐶𝑥
2

4
− (1 − 𝑘)𝜌𝐶𝑦𝐶𝑥] − (

1

𝑛
−

1

𝑁
) 𝑆𝑦

2 + (
1

𝑟
−

1

𝑛
) (𝑅2𝑆𝑥

2 − 2𝑅𝑆𝑥𝑦) < 0  (15) 

 

Is true for optimum value. Hence therefore proposed estimator is more efficient than the Ratio estimator. 

 

7. Comparison of proposed estimator with compromised imputation estimator 

Form the expressions (14) and (8), we have 𝑀𝑆𝐸(�̅�𝒑) < Min. MSE (�̅�𝐶𝑜𝑚) when  

 

(
1

𝑟
−

1

𝑛
) [(1 − 𝛼)2𝐶2

𝑥 − 2(1 − 𝛼)𝜌𝐶𝑦𝐶𝑥] − (
1

𝑟
−

1

𝑁
) [(1 − 𝑘)2 𝐶𝑥

2

4
− (1 − 𝑘)𝜌𝐶𝑦𝐶𝑥] < 0  (16)  

 

Is true for optimum value of = 1 −
𝜌𝐶𝑦

𝜃𝐶𝑥
 , hence the proposed estimator is more efficient than the existing estimator. 
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8. Comparison of proposed estimator with Singh and Deo (2003) [10] estimator 

 Form the expressions (14) and (10), we have 𝑀𝑆𝐸(�̅�𝒑) < Min. MSE (�̅�𝑆𝐷) when  

 

�̅�2 (
1

𝑟
−

1

𝑁
) [(1 − 𝑘)2 𝐶𝑥

2

4
− (1 − 𝑘)𝜌𝐶𝑦𝐶𝑥] − �̅�2 [𝛼2 {(

1

𝑛
−

1

𝑁
) 𝐶𝑥

2 + (
1

𝑟
−

1

𝑁
) 𝐶𝑥

2 − 2 (
1

𝑛
−

1

𝑁
) 𝜌𝐶𝑥𝐶𝑦} + 2𝛼 {(

1

𝑛
−

1

𝑁
) 𝜌𝐶𝑥𝐶𝑦 −

(
1

𝑟
−

1

𝑁
) 𝜌𝐶𝑥𝐶𝑦}] < 0  (17) 

 

Which is always true. Thus, the proposed estimator is more efficient than the Singh and Deo (2003)  [10] estimator under optimality 

condition.  

 

9. Case study  

In this section, we assess the performance of the proposed estimator by conducting a comparative analysis against existing 

estimators. To facilitate this comparison, we employ two distinct population datasets. Here we computed the approximate value 

MSE of the respective estimators. The population 1 is taken from the NSSO and another population 2 was given by Kadilar and 

Cingi (2008). The performance of the estimators is studied based on the percentage relative efficiency (PRE).  

The percentage relative efficiency is given by as follows: 

 

𝑃𝑅𝐸 =
𝑉(�̅�𝑟)

𝑀𝑆𝐸(�̅�𝑖)
∗ 100 

 

Where, 

i = �̅�𝑟𝑎𝑡  , �̅�𝑐𝑜𝑚𝑝  𝑎𝑛𝑑 �̅�𝑝𝑟𝑎𝑝𝑜 

 
Table 1: Data used for study 

 

Parameters Population 1(NSSO) Population 2 

N 2397 19 

n 500 10 

r (assumed) 350 8 

�̅� 2.121819 575 

�̅� 2.170371 13537.68 

𝐶𝑌 0.94899 1.4928 

𝐶𝑋 1.886679 0.956248 

𝛽1(𝑋) 4.754219 - 

𝛽2(𝑋) 33.11113 - 

𝜌𝑌𝑋 -0.03895 0.88 

 

In the following table the percentage relative efficiency of the different estimator are given which is used for comparison of the 

study. According to the following table it is clearly showing that the proposed estimator is performing superior than the existing 

estimators (Ratio and compromised method of imputation). 

 
Table 2: MSE of estimators 

 

Estimators Population 1 Population 2 

�̅�𝑟𝑎𝑡 17294.42 132.6477 

�̅�𝑐𝑜𝑚𝑝 42162.14 136.2262 

�̅�𝑝𝑟𝑎𝑝𝑜 42372.48 690.5383 

 

The table 2 showing the PRE of Proposed estimator and the existing estimators (Ratio estimator and compromise imputation 

estimator). Form the above table for both the populations PRE of proposed estimator is more than the existing estimators by this 

we can conclude that the proposed estimator is preferable over the existing estimators by obtaining efficient point estimator. 

 

10. Conclusion 

A problem of non-response for a specific unit or units in the population occurs frequently in surveys involving the medical 

profession, social surveys, and household surveys etc… Due to missing values in the data set, this non-sampling error may creep 

and produce wrong inferences. In the present study, the alternative estimator of population mean under compromised imputation 

method has been proposed. Its bias and MSE also been proposed. For the proposed estimator the efficiency has been checked and 

prove to be more efficient than the existing estimators like ratio method of imputation, mean method of imputation and 

compromised imputation. 
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Appendix – 1: To prove 3.2 theorem, we have the point estimator as  

 

�̅�𝑝 =  𝑘�̅�𝑟 + (1 − 𝑘)�̅�𝑟 (
�̅�𝑛

�̅�𝑟

) 𝑒𝑥𝑝 (
�̅� − �̅�𝑟

�̅� + �̅�𝑟

) 

 

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑛𝑔 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 휀, 𝛿 𝑎𝑛𝑑 𝜂 

 

�̅�𝑝 =  𝑘�̅�𝑟 + (1 − 𝑘)�̅�𝑟 (
�̅�𝑛

�̅�𝑟

) 𝑒𝑥𝑝 (
�̅� − �̅�𝑟

�̅� + �̅�𝑟

) 

 

= 𝑘�̅�(1 − 휀) + (1 − 𝑘)�̅�(1 − 휀) (
�̅�(1 + 𝜂)

�̅�(1 + 𝛿)
) 𝑒𝑥𝑝 (

�̅� − �̅�(1 + 𝛿)

�̅� + �̅�(1 + 𝛿)
) 

 

= 𝑘�̅�(1 − 휀) + (1 − 𝑘)�̅�(1 − 휀) (
(1 + 𝜂)

(1 + 𝛿)
) 𝑒𝑥𝑝 (

�̅�[1 − (1 + 𝛿)]

�̅�[1 − (1 + 𝛿)]
) 

 

= 𝑘�̅�(1 − 휀) + (1 − 𝑘)�̅�(1 − 휀) (
1 + 𝜂

1 + 𝛿
) 𝑒𝑥𝑝 (

�̅�[1 − (1 + 𝛿)]

�̅�[1 − (1 + 𝛿)]
) 

 

= 𝑘�̅�(1 − 휀) + (1 − 𝑘)�̅�(1 − 휀) (
1 + 𝜂

1 + 𝛿
) 𝑒𝑥𝑝 [

−𝛿

2 + 𝛿
] 

 

= 𝑘�̅�(1 − 휀) + (1 − 𝑘)�̅�(1 − 휀) (
1 + 𝜂

1 + 𝛿
) 𝑒𝑥𝑝 [

−𝛿

2
(1 −

𝛿

2
)

−1

] 

 

= 𝑘�̅�(1 − 휀) + (1 − 𝑘) (
1 + 𝜂

1 + 𝛿
) �̅� ⌈1 + 휀 −

𝛿

2
+

𝛿2

4
+

𝜖𝛿

2
⌉ 

 

= 𝑘�̅�(1 − 휀) + (1 − 𝑘)�̅�(1 + 𝜂)(1 + 𝛿)−1 ⌈1 + 휀 −
𝛿

2
+

𝛿2

4
+

𝜖𝛿

2
⌉ 

 

= 𝑘�̅�(1 − 휀) + (1 − 𝑘)�̅�(1 + 𝜂)(1 − 𝛿 + 𝛿2 … ) ⌈1 + 휀 −
𝛿

2
+

𝛿2

4
+

𝜖𝛿

2
⌉ 

 

= 𝑘�̅�(1 − 휀) + (1 − 𝑘)�̅�(1 − 𝛿 + 𝛿2 + 𝜂 − 𝜂𝛿 + 𝜂𝛿2) ⌈1 + 휀 −
𝛿

2
+

𝛿2

4
+

𝜖𝛿

2
⌉ 

 

= 𝑘�̅�(1 − 휀) + (1 − 𝑘)�̅� ⌈1 + 휀 −
𝛿

2
+

𝛿2

4
+

𝜖𝛿

2
− 휀𝛿 +

𝛿2

2
+ 𝜂휀 −

𝜂𝛿

2
⌉ 

 

= �̅� + �̅�휀 + (1 − 𝑘)�̅� ⌈−
𝛿

2
+

𝛿2

4
−

𝜖𝛿

2
+

𝛿2

2
+ 𝜂휀 −

𝜂𝛿

2
⌉ 
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�̅�𝑝 = �̅� + �̅�휀 + (1 − 𝑘)�̅� ⌈−
𝛿

2
+

𝛿2

4
−

𝜖𝛿

2
+

𝛿2

2
+ 𝜂휀 −

𝜂𝛿

2
⌉ 

 

Taking expectation on both side 

 

�̅�𝑝 = �̅� + �̅�휀 + (1 − 𝑘)�̅� ⌈−
𝛿

2
+

𝛿2

4
−

𝜖𝛿

2
+

𝛿2

2
+ 𝜂휀 −

𝜂𝛿

2
⌉ 

 

𝐸(�̅�𝑝) − �̅� = +�̅�𝐸(휀) + (1 − 𝑘)�̅� ⌈−
1

2
𝐸(𝛿) +

3

4
𝐸(𝛿2) −

1

2
𝐸(𝜖𝛿) + 𝐸(𝜂휀) −

1

2
𝐸(𝜂𝛿)⌉ 

 

𝐵(�̅�𝑝) = �̅�(1 − 𝑘) [
3

4
(

1

𝑟
−

1

𝑁
) 𝐶𝑥

2 −
1

2
(

1

𝑟
−

1

𝑁
) 𝜌𝐶𝑦𝐶𝑥 + (

1

𝑛
−

1

𝑁
) 𝜌𝐶𝑦𝐶𝑥 +

1

2
(

1

𝑛
−

1

𝑁
) 𝐶𝑥

2] 

 

𝐵(�̅�𝑝) = �̅�(1 − 𝑘) (
1

𝑟
−

1

𝑁
) 𝐶𝑥 [

3

4
𝐶𝑥 −

1

2
𝜌𝐶𝑦] + (

1

𝑛
−

1

𝑁
) 𝐶𝑥 [𝜌𝐶𝑦 +

1

2
] 𝐶𝑥

2 

 

Appendix – 2: To prove 3.3 theorem, we have 

 

(�̅�𝑝 − �̅�)
2

= �̅�2휀2 + �̅�2(1 − 𝑘)2 [
𝛿2

4
] + 2(1 − 𝑘)�̅�2 (

−휀𝛿

2
) 

 

Taking expectation on both side 

 

𝐸(�̅�𝑝 − �̅�)
2

= �̅�2𝐸(휀2) + �̅�2(1 − 𝑘)2 [
1

4
𝐸(𝛿2)] − (1 − 𝑘)�̅�2𝐸(휀𝛿) 

 

𝑀𝑆𝐸(�̅�𝑝) = �̅�2 (
1

𝑟
−

1

𝑁
) 𝐶𝑦

2 + �̅�2(1 − 𝑘)2 [
1

4
(

1

𝑟
−

1

𝑁
) 𝐶𝑥

2] − (1 − 𝑘)�̅�2 (
1

𝑟
−

1

𝑁
) 𝜌𝐶𝑦𝐶𝑥 

 

𝑀𝑆𝐸(�̅�𝑝) = �̅�2 (
1

𝑟
−

1

𝑁
) [𝐶𝑦

2 + (1 − 𝑘)2
𝐶𝑥

2

4
− (1 − 𝑘)𝜌𝐶𝑦𝐶𝑥] 

 

Differentiating w.r.t (1-k) and equating to zero 

 

𝑑[𝑀𝑆𝐸(�̅�𝑝)]

𝑑[1 − 𝑘]
= �̅�2 (

1

𝑟
−

1

𝑁
) [𝐶𝑦

2 + 2(1 − 𝑘)
𝐶𝑥

2

4
− 𝜌𝐶𝑦𝐶𝑥] = 0 

 

𝐶𝑦
2 + 2(1 − 𝑘)

𝐶𝑥
2

4
− 𝜌𝐶𝑦𝐶𝑥 = 0 

 

(1 − 𝑘)
𝐶𝑥

2

2
= 𝜌𝐶𝑦𝐶𝑥 − 𝐶𝑦

2 

 

(1 − 𝑘) =
2[𝜌𝐶𝑦𝐶𝑥 − 𝐶𝑦

2]

𝐶𝑥
2  

 

𝑘 = 1 −
2[𝜌𝐶𝑦𝐶𝑥 − 𝐶𝑦

2]

𝐶𝑥
2  
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