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Abstract 
In biological and life sciences, including fields like agriculture and medicine, we frequently encounter 
data with repeated measures. Repeated measures indicate that measurements have been taken on the 
same individual unit multiple times, either over time or across space. If a population contains repeated 
measures, there will necessarily be correlation within that population. Analyzing data with a repeated 
measures structure requires special consideration because it can invalidate standard analysis of variance 
techniques. This project investigates a prediction approach that has not been previously explored in the 
presence of intraclass correlation within the population. In this study, we attempt to predict the 
population total by drawing samples from a repeated measures population using Probability Proportional 
to Size with Replacement (PPSWR). The prediction approach outlined by Brewer (1963) and Royall 
(1970) is employed. The estimates of variance (σ²) and intraclass correlation coefficient (ρ) are obtained 
through analysis of variance (ANOVA) by fitting a one-way random effects model and equating the 
mean squares (MS) to the expected mean squares (EMS). 
 
Keywords: Repeated measures, prediction approach, intraclass correlation, analysis of variance 
(ANOVA), Proportional to Size with Replacement (PPSWR), Random effects model. 
 

Introduction 
Agricultural research heavily relies on data with repeated measures (Liu et al., 2019) [4]. This 
refers to situations where multiple measurements are collected on the same unit. The term 
"unit" can encompass various entities depending on the study design, such as an experimental 
unit in a designed experiment, a sampling unit in a survey, or a subject in a retrospective study 
(Field et al., 2012) [2]. Repeated measures are typically collected over time to track changes, 
but spatial measurements can also be included. In this paper, we will use "point" to refer to 
either a point in time or space.  
The ubiquity of repeated measures data in agriculture is evident across various fields. A 
common example involves growth measurements of plants or animals monitored over time 
(Carmer et al., 1989) [1]. Other examples of repeated measures over time include: Crop yields 
from repeated harvests on experimental plots (Littell et al., 2009) [5]. Daily milk production 
from individual cows (Wolfinger, 1998) [6]. Weekly livestock prices at specific auction 
markets. Spatial repeated measures can include: Soil moisture content at various depths in core 
samples. Pollutant concentrations measured at multiple points on a line transect. Spray 
deposition amounts at various locations within citrus trees. For consistency throughout this 
paper, we will primarily use terminology associated with repeated measures in time. 
Additionally, "unit" will refer specifically to the sampling unit.  
Analyzing repeated measures data requires special consideration due to the inherent 
correlation structure within the data for each unit. This correlation structure can invalidate 
standard analysis of variance (ANOVA) techniques (Field et al., 2012) [2]. For balanced data 
(meaning all units have complete data at identical time points), multivariate ANOVA methods 
can be employed. Alternatively, adjustments can be applied to univariate methods to account 
for the correlation structure (Kutner et al., 2005) [3].  
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Balanced repeated measures data are traditionally analyzed 
using the split-plot in time ANOVA, also known as the 
univariate repeated measures ANOVA (Littell et al., 2009) [5]. 
 

Data Description 
This study examines the exercise component of a larger 
investigation into the effects of nutrition and exercise on 
physical strength in geriatric citizens. Three weight training 
programs were implemented, with subjects randomly assigned 
to each program. Subject strength, measured by the amount of 
weight lifted, was assessed every other day for two weeks. 
The first program served as a control group (CONT) with no 
weight training. The second program (R1) utilized a weight 
training system where the number of exercise repetitions 
progressively increased over time. In the third program (W1), 
the weight lifted was incrementally increased throughout the 
study. Systolic blood pressure was also measured repeatedly 
for each subject. Since a significant correlation exists between 
blood pressure and subject weight (the study variable), blood 
pressure can be considered an auxiliary variable in the 
analysis. Subject height represents the size measure variable. 
This information will be utilized for drawing samples using 

Probability Proportional to Size with Replacement (PPSWR) 
from the CONT, R1, and W1 populations, respectively. 
 

Methodology 
This exercise therapy study exemplifies a common type of 
research design known as a repeated measures design. In such 
designs, subjects are randomly assigned to different 
"treatment" groups. A response variable of interest is then 
measured repeatedly over time for each subject. A model for 
data from this type of study is. 
 

𝑦𝑖𝑗𝑘 = 𝜇𝑖𝑘 + 𝜖𝑖𝑗𝑘 

 
where, yijk is the response of the jth subject in the ith treatment 
at the kth time, and μik is the population mean for treatment i at 
time k. The errors εijk are assumed normally distributed with 

mean zero and V(εijk)=V, where 𝜀𝑖𝑗𝑘 =

[𝜀𝑖𝑗1 𝜀𝑖𝑗2  … 𝜀𝑖𝑗𝑡]′. A key issue with repeated measures 
data is the structure of the covariance matrix V. Here, are five 
particular structures in terms of mathematical conditions on 
σkḱ the element in row k, column k', of V, that play a role in 
repeated measures data. 

 
Table 1: Show structure, restriction and mathematical condition 

 

S. No. Structure Restriction Mathematical Condition 

1. Unstructured No Restrictions 𝐕 = (𝜎𝑘𝑘′); Positive Definite 

2. Spherical Equal variances; Zero Covariances 𝜎𝑘𝑘 = 𝜎2;  𝜎𝑘𝑘′ = 0 

3. Compound symmetric Equal Variances; Equal Covariances 𝜎𝑘𝑘 = 𝜎2;  𝜎𝑘𝑘′ = 𝛿𝜎2 

4. Huynh-Feldt Unrestricted Variances; Restricted Covariance 𝜎𝑘𝑘 = 2𝜏𝑘 + 𝜙; 𝜎𝑘𝑘′ = 𝜏𝑘 + 𝜏𝑘′ 

5. Autoregressive Covariance Function of Time Interval between Repeated Measures 𝜎𝑘𝑘′ = Θ|𝑘−𝑘′| 

 

Let, the three Populations viz. CONTD, R1 and W1 be 
modelled as. 
 

𝑌𝑖 = 𝛽𝑋𝑖 + 𝜀𝑖; 𝑖 = 1(1)𝑁 
 
Where, Xi’s are >0 values and are non-stochastic and εi’s are 
random variables such that, 𝐸𝑚(𝜀𝑖) = 0, 𝑉𝑎𝑟𝑚(𝜀𝑖) =

𝜎𝑖
2, 𝐶𝑜𝑣𝑚(𝜀𝑖 , 𝜀𝑗) = 𝜌𝜎𝑖𝜎𝑗 , ∀𝑖 = 1,2, … , 𝑁; 𝑎𝑛𝑑 𝑖 ≠ 𝑗 = 1,2, … , 𝑁. 

Here, Em, Varm and Covm are model dependent Expectation, 
Variance and Covariance Operators respectively. The 

Population total 𝑌 = ∑ 𝑌𝑖
𝑁
𝑖−1  can be bifurcated into two 

components viz. 

𝑌 = ∑ 𝑌𝑖 =

𝑁

𝑖=1

∑ 𝑌𝑖

𝑠

+ ∑ 𝑌𝑖

𝑟

 

 

where, ∑ 𝑌𝑖𝑠  is the part contained in the sample and ∑ 𝑌𝑖𝑟  is 
the remaining component not covered in the sample and is the 
value of a random variable i.e. needs to be predicted. 
 

Results 
For Control (CNTD) Population Size, N=140, Sample Drawn 
by (PPSWR) Size n=50, the sample obtained is as follows: 

 
Table 2: Sample Obtained for CNTD Population 

 

Ys Xs Ys/Xs Ys Xs Ys/Xs 

80 93 0.860215 83 130 0.638462 

78 113 0.690265 81 103 0.786408 

84 125 0.672000 79 88 0.897727 

80 120 0.666667 84 118 0.711864 

76 132 0.575758 79 89 0.887640 

79 85 0.929412 82 122 0.672131 

76 118 0.644068 82 114 0.719298 

77 133 0.578947 81 109 0.743119 

79 102 0.774510 87 91 0.956044 

77 123 0.626016 76 121 0.628099 

82 87 0.942529 83 124 0.669355 

84 107 0.785047 79 89 0.887640 

83 94 0.882979 77 105 0.733333 

78 127 0.614173 81 86 0.941860 

80 101 0.792079 86 102 0.843137 

78 120 0.650000 79 107 0.738318 

85 89 0.955056 76 87 0.873563 

77 118 0.652542 84 107 0.785047 

82 123 0.666667 77 134 0.574627 

78 105 0.742857 74 121 0.611570 

80 95 0.842105 81 122 0.663934 

80 93 0.860215 78 100 0.780000 

80 106 0.754717 83 95 0.873684 

78 110 0.709091 79 85 0.929412 

80 85 0.941176 82 120 0.683333 
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Based on this sample the values of t0 and M0 for Contd 

Population are as follows. 

 

𝛽̂ =
1

𝑛
∑

𝑌𝑠

𝑋𝑠
= 0.76

𝑠

 

 

𝑡0 = ∑ 𝑌𝑖

𝑠

+ 𝛽̂ ∑ 𝑋𝑟 =

𝑟

4004 + (0.76 ∗ 9661) = 11346.36 

 

𝑀0 = 𝑉𝑎𝑟𝑚(𝑡0 − 𝑌)2 = 𝐸𝑚(𝑡0 − 𝑌)2 =
𝑁2

𝑛
(1 − 𝑓)

𝑋̅𝑥𝑟̅̅ ̅

𝑥̅
𝜎2

= 213600.57 

 

For R1 Population Size, N=112, Sample Drawn by (PPSWR) 

Size n=35, the sample obtained is as follows: 

 
Table 3: Sample Obtained for R1 Population 

 

Ys Xs Ys/Xs Ys Xs Ys/Xs 

79 122 0.64754 80 87 0.91954 

83 89 0.93258 79 101 0.78218 

80 130 0.61539 82 85 0.96471 

76 115 0.66087 82 91 0.90110 

77 122 0.63115 76 95 0.80000 

84 85 0.98824 79 116 0.68103 

76 97 0.78351 87 110 0.79091 

79 123 0.64228 78 132 0.59091 

78 118 0.66102 86 120 0.71667 

79 126 0.62698 82 109 0.75229 

83 97 0.85567 82 119 0.68908 

83 120 0.69167 78 88 0.88636 

84 111 0.75676 86 113 0.76106 

78 112 0.69643 88 120 0.73333 

75 91 0.82418 86 130 0.66154 

77 85 0.90588 75 111 0.67568 

80 120 0.66667 75 113 0.66372 

78 126 0.61905 
   

 

Based on this sample the values of t0 and M0 for R1 

Population are as follows. 

 

𝛽̂ =
1

𝑛
∑

𝑌𝑠

𝑋𝑠
= 0.75

𝑠

 

𝑡0 = ∑ 𝑌𝑖

𝑠

+ 𝛽̂ ∑ 𝑋𝑟 =

𝑟

2810 + (0.75 ∗ 8376) = 9092 

𝑀0 = 𝑉𝑎𝑟𝑚(𝑡0 − 𝑌)2 = 𝐸𝑚(𝑡0 − 𝑌)2 =
𝑁2

𝑛
(1 − 𝑓)

𝑋̅𝑥𝑟̅̅̅

𝑥̅
𝜎2 = 366381.03 

 

For W1 Population Size, N=91, Sample Drawn by (PPSWR) 

Size n=30, the sample obtained is as follows: 
 

Table 4: Sample Obtained for W1 Population 
 

Ys Xs Ys/Xs Ys Xs Ys/Xs 

84 117 0.71795 75 116 0.64655 

74 120 0.61667 81 97 0.83505 

83 87 0.95402 82 125 0.65600 

82 122 0.67213 80 89 0.89888 

81 121 0.66942 81 105 0.77143 

83 133 0.62406 83 116 0.71552 

85 112 0.75893 76 122 0.62295 

75 114 0.6579 81 128 0.63281 

87 111 0.78378 87 90 0.96667 

80 127 0.62992 83 96 0.86458 

79 95 0.83158 75 128 0.58594 

89 86 1.03488 83 134 0.61940 

81 125 0.64800 83 87 0.95402 

82 103 0.79612 76 120 0.63333 

80 118 0.67797 76 120 0.63333 
 

Based on this sample the values of t0 and M0 for W1 

Population are as follows. 
 

𝛽̂ =
1

𝑛
∑

𝑌𝑠

𝑋𝑠
= 0.74

𝑠

 

 

𝑡0 = ∑ 𝑌𝑖

𝑠

+ 𝛽̂ ∑ 𝑋𝑟 =

𝑟

2427 + (0.74 ∗ 6538) = 7265.12 

 

𝑀0 = 𝑉𝑎𝑟𝑚(𝑡0 − 𝑌)2 = 𝐸𝑚(𝑡0 − 𝑌)2 =
𝑁2

𝑛
(1 − 𝑓)

𝑋̅𝑥𝑟̅̅̅

𝑥̅
𝜎2 = 259863.088 

 

To estimate the variance 𝜎2 and the intraclass correlation 

coefficient ρ, ANOVA estimators were applied to all three 

populations. The results are outlined below: 
 

Estimation of σ and ρ by ANOVA estimators 

For Control Population, NM=140, 20 clusters each of size 7 

we draw a sample of 10 clusters each of size 7 by PPSWR. 

 
Table 5: Show mean squares and expected mean square 

 

Source Mean Squares Expected Mean Square 

Between Cluster 𝐵 =
1

𝑛 − 1
∑ 𝑚(𝑌𝑠𝑖

̅̅ ̅ − 𝑌̅)2

𝑖𝜖𝑠

= 60.66 𝜎2[1 + (𝑚 − 1)𝜌] = 60.314 

Within Cluster 𝑊 =
1

𝑛
∑ ∑

1

𝑚 − 1
(𝑌𝑖𝑗 − 𝑌𝑠𝑖

̅̅ ̅)2 

𝑗𝜖𝑠𝑖𝑖𝜖𝑠

= 0.80 𝜎2(1 − 𝜌) = 0.799 

 

Thus, 𝜌 = 0.914, 𝜎2 = 9.302 For R1 Population, NM=112, 16 clusters each of size 7 we 

draw a sample of 8 clusters each of size 7 by PPSWR. 

 
Table 6: Show between cluster and within cluster 

 

Source Mean Squares Expected Mean Square 

Between Cluster 91.71 91.224 

Within Cluster 22.89 22.88 

 

Thus, 𝜌 = 0.299, 𝜎2 = 32.65 For W1 Population, NM=91, 13 clusters each of size 7 we 

draw a sample of 6 clusters each of size 7 by PPSWR. 
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Table 7: Show mean squares and expected mean square NM=91, 13 

clusters each 
 

Source Mean Squares Expected Mean Square 

Between Cluster 181.64 150.61 

Within Cluster 1.873 1.872 

 

Thus, 𝜌 = 0.919, 𝜎2 = 23.12 

 

Conclusion 

This study investigated the application of a prediction 

approach for data with repeated measures. We demonstrated 

that this method provides a viable strategy for estimating 

population parameters, including population means and totals. 

Additionally, the approach allows for the estimation of key 

statistical measures like standard deviation (σ) and intraclass 

correlation coefficient (ρ) through analysis of variance 

(ANOVA) estimators. Our findings highlight the potential 

benefits of this method for analyzing data with correlated 

populations. Compared to traditional approaches that may be 

rendered invalid by the presence of correlation, this prediction 

approach offers a reliable and potentially more accurate 

alternative. 
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