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Abstract 

This study employs multivariate analysis to investigate the relationship between heart disease parameters 

and outcomes. Rigorous assessment of normality, multicollinearity, and covariance matrix equality 

ensures analysis validity. Data normalization via the Box-Cox method enhances normality, facilitating 

robust statistical analyses. Multivariate analysis of Variance (MANOVA) uncovers significant heart 

disease parameter variations across Outcome variables. Linear discriminant analysis (LDA) assesses 

heart disease parameters' capacity to classify individuals, emphasizing gender as a discriminating factor. 

Results highlight the importance of heart disease parameters in understanding population characteristics 

and their implications for medical research and clinical practice. The confusion matrix reflects the 

classification accuracy of a heart disease prediction model, achieving 72.9% overall accuracy in 

distinguishing between individuals with and without heart disease. 

 

Keywords: Heart disease parameters, box-cox, manova, Wilks' lambda, and fisher discriminant analysis 

 

Introduction 

Heart disease remains a significant contributor to global morbidity and mortality rates, posing 

substantial challenges to public health systems and individual well-being. Understanding the 

multifaceted nature of heart disease is paramount, necessitating a comprehensive grasp of the 

intricate interplay between various physiological factors and lifestyle choices in its onset and 

progression. Efforts in research aimed at unravelling these complexities are crucial for 

advancing medical knowledge and refining clinical interventions to alleviate the burden of 

heart disease. 

In assessing Heart disease health, researchers consider a range of factors, including Age, chest 

pain type, resting blood pressure, serum cholesterol levels, fasting blood sugar levels, resting 

electrocardiographic results, maximum heart rate achieved, ST depression induced by exercise 

relative to rest, the slope of the peak exercise ST segment, and the number of significant 

vessels colored by fluoroscopy. Acknowledging the significance of these factors, researchers 

and healthcare practitioners strive to elucidate their correlations with demographic variables to 

enhance risk prediction models and tailor interventions effectively. 

Discriminant analysis, a robust multivariate technique, offers a systematic approach to 

exploring the relationships between heart disease parameters and outcome characteristics. By 

identifying linear combinations of these parameters, discriminant analysis facilitates 

classifying individuals into distinct outcome groups based on observed characteristics. This 

analytical approach sheds light on the factors influencing heart disease biology and contributes 

to developing predictive models for disease risk stratification. 

 

The main objectives of this work are as follows: 

1. To identify linear combinations of heart disease parameters through discriminant analysis. 

2. Determine the effectiveness of these combinations in discriminating between outcome 

groups. 

3. Ascertain the relative importance of different heart disease parameters in distinguishing 

between disease and non-disease categories. 

4. Assess the statistical significance of discriminant functions to evaluate differences among 

outcome groups based on heart disease parameters. 

https://www.mathsjournal.com/
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Review of literature 

Durrant and Kaban (2010) [7] utilized a novel approach 

incorporating random projections with Fisher's Linear 

Discriminant (FLD) classifier for classification tasks. Unlike 

previous methods focusing solely on preserving pairwise 

distances under projection, the authors' approach emphasizes 

leveraging the inherent class structure within the data. This 

unique methodology does not impose sparsity or low-

dimensional constraints on the dataset, allowing for more 

flexible and accurate classification. Through their research, 

the authors derive a tight upper bound on the estimated 

misclassification error over random projections, 

demonstrating improved generalization with larger training 

datasets. Moreover, they highlight that covariance 

misspecification errors are not exacerbated in the low-

dimensional space, providing further evidence of the efficacy 

of their approach. Overall, the authors' development and 

utilization of this innovative technique offer significant 

advancements in classification analysis. 

Ramayah et al. (2010) [20] present a step-by-step example, 

making it easier for readers to comprehend the intricacies of 

discriminant analysis. They carefully explain the necessary 

assumptions and procedures involved in discriminant 

analysis, including data preparation, model estimation, and 

interpretation of results. 

Nainggolan et al. (2018) [16] used discriminant analysis and 

classified Hypertension women aged 27 to 54 years living in 

the village in the central district of Bogor. The results of the 

multivariate discriminant analysis showed that the level of 

Vo2 max is the only distinction maker in the incidence of 

hypertension. 

ALKubaisi et al. (2019) [1] used discriminant analysis with 

three criteria to test the developed model, producing excellent 

projecting precision. The discriminant function has properly 

assessed and classified about 67% of the cases in the analysis. 

Also, the study included two discriminant tasks: The first was 

explained by 77%, and the second was presented by 23% of 

the Variance. 

Dibal and Abraham (2020) [5] applied Fisher's linear 

Discriminant Analysis (FLDF) to health data on diabetic 

patients from the University of Port Harcourt Teaching 

Hospital, Rivers, Nigeria. He created a predictive discriminant 

model that classifies patients into one of two groups (Diabetic 

and Non-Diabetic). Fisher's linear discriminant function 

correctly classifies 65.4% of the total observation. 

Garate-Escamila et al. (2020) [9] proposed a dimensionality 

reduction method and identified pertinent features related to 

heart disease by applying feature selection techniques. We 

evaluated six ML classifiers for validation using data from the 

UCI Machine Learning Repository's Heart Disease dataset, 

consisting of 74 features and a label. Among these, the Chi-

square and principal component analysis (CHI-PCA) coupled 

with random forests (RF) yielded the highest accuracy rates, 

achieving 98.7% for Cleveland, 99.0% for Hungarian, and 

99.4% for Cleveland-Hungarian (CH) datasets. The 

ChiSqSelector technique derived features of anatomical and 

physiological significance, including cholesterol levels, 

maximum heart rate, chest pain indicators, features associated 

with ST depression, and heart vessel characteristics. 

Experimental findings underscored that combining chi-square 

with PCA demonstrates superior performance across most 

classifiers. Conversely, employing PCA directly from raw 

data yielded lower results, necessitating increased 

dimensionality for performance enhancement. 

Ricciardi et al. (2020) [21] presented a comprehensive analysis 

of data mining techniques applied to a population of 10,265 

individuals assessed for myocardial ischemia by the 

Department of Advanced Biomedical Sciences. With 22 

features extracted, linear discriminant analysis (LDA) is 

utilized twice, employing the Knime analytics platform and R 

statistical programming language to classify patients into 

normal or pathological categories. The Knime analysis solely 

focuses on classification, while the R-based method 

incorporates principal component analysis (PCA) for feature 

creation before classification. Results indicate classification 

accuracies of 84.5% and 86.0%, respectively, with high 

specificity (>97%) and sensitivity (62-66%). This practical 

implementation demonstrates the utility of traditional data 

mining techniques in aiding clinical decision-making, 

leveraging PCA for feature reduction. 

Ndako et al. (2020) [17] investigated if haematological 

measurements could differentiate between typhoid-positive 

and negative paediatric patients. Using Fisher's Linear 

Discriminant Method, 200 patients were analyzed. A 

discriminant score threshold of 0.0067 was established, with 

patients above classified as unfavourable and below as 

positive. Classification efficacy was assessed using retribution 

estimate and leaving-one-out approaches, indicating a 75.8% 

and 74.7% prevalence for typhoid-positive patients, 

respectively. These findings suggest a high prevalence of 

typhoid fever among paediatric patients, emphasizing the 

need for improved point-of-care diagnostics with robust 

positive predictive value. 

Liberia et al. (2020) explored Discriminant Function Analysis 

(DFA) to evaluate the effectiveness of Indigenous health-and-

wellness programs, particularly in the Eeyou Istchee territory, 

Canada. By analyzing various health parameters, DFA models 

were developed to discriminate between individuals with and 

without Type 2 Diabetes Mellitus (T2DM). The models 

exhibited high specificity (~97%) in classifying non-T2DM 

individuals. This research underscores the potential of DFA in 

point-of-contact evaluations for monitoring and assessing 

health interventions in rural and remote Indigenous 

communities, providing valuable insights for T2DM 

management and prevention strategies among the James Bay 

Cree population.  

Ding et al. (2023) [6] introduced the Sparse Variables 

Selection Exponential Local Fisher Discriminant Analysis 

(SELFDA) model to address shortcomings in fault 

classification using Local Fisher Discriminant Analysis 

(LFDA). By automatically identifying key faulty variables 

through the minor absolute shrinkage and selection operator, 

SELFDA enhances fault diagnosis performance and model 

interpretability. It overcomes the Small Sample Size (SSS) 

problem by employing a matrix exponential strategy, ensuring 

full-rank within-class scatter matrices. This approach, tested 

on the Tennessee Eastman process and a real-world diesel 

working process, outperforms existing methods, 

demonstrating its effectiveness in practical industrial 

applications.  

Rahamneh et al. (2023) [19] utilized discriminant analysis to 

distinguish between two types of Bowel and Esophageal 

cancer in Jordan, identifying significant variables such as sex, 

weight, and Platelets Count P.C. The correct classification 

rates for the first and second groups were 62.8% and 77% 

respectively, with misclassification rates of 37.2% and 23%. 

The proper classification ratio was 71.6%, with a false 

classification ratio of 28.4%. The method effectively 

identified vital independent variables for diagnosing both 
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cancer types, with correct classification probabilities of 66.4% 

and 77.6% for the first and second groups, respectively. 

Henry et al. (2023) [11] investigated the spectral differences of 

tobacco leaves under macronutrient deficiencies. They 

employed information entropy and spectral derivatives 

methods to identify the most effective wavelengths for 

discrimination. Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA) algorithms were utilized 

to reduce data dimensionality and classify the symptoms. The 

study's findings revealed that the overall accuracy for 

classifying young, intermediate, and mature plants was 92%, 

82%, and 75%, respectively. The results also indicated that 

nitrogen, sulfur, and magnesium deficiencies significantly 

impacted the classification accuracy. In contrast, deficiencies 

in phosphorus and potassium had minimal effect on the 

classification outcomes. 

 

Materials and Methods 

Material 

The dataset under scrutiny comprises 303 meticulously 

gathered patient data records, incorporating 14 distinct 

features alongside the target variable, shedding light on the 

dynamics of heart disease. These features encapsulate vital 

health indicators and clinical observations, comprehensively 

portraying factors influencing heart disease health. The 

dataset, meticulously assembled and accessible for analysis, 

offers valuable insights into the intricate dynamics of heart 

diseases, facilitating advancements in medical research and 

clinical practice. The dataset is available on Kaggle 

(https://www.kaggle.com/code/desalegngeb/heart-disease-

predictions), allowing researchers, clinicians, and enthusiasts 

to explore and analyze the data. Each entry in the dataset 

reflects meticulous data collection processes, ensuring 

accuracy and reliability for subsequent analysis and 

interpretation. This dataset is a valuable resource for 

exploring the multifaceted aspects of heart disease and 

advancing our understanding of its underlying mechanisms. 

 

Methods 

Box-Cox method 

The Box-Cox method is used in statistics and econometrics to 

transform non-normal data into approximately normal data. It 

is named after statisticians George Box and Sir David Cox 

and was introduced in 1964. Let 
'

1 2( , ,..., )ny y y y  be the date 

on which the Box-Cox transformation is applied. Box and 

Cox (1964) defined their transformation as 

 
1

( ) ( 1) 0

log (y ) 0

i

i

i

y if
y

if



  



   
  

         (1) 

 

Such that for unknown    

 
( )y X              (2) 

 

Where 
( )y 

is the transformed data, X is the design matrix 

(possible covariates of interest),   is the set of parameters 

associated with the transformed data, and 1 2( , ,..., )n   

is the error term. Since the aim of Equation (1) is that  

 
( ) 2( , )ny N X I  

         (3) 

 

Then,
2~ (0, )N  . The transformation in Equation (1) is only 

valid for 
0, 1,2,..., niy i 

 modifications to be made when 

negative observations are present (Vélez et al., (2015) [24].  

 

Multivariate analysis of variance 

A manova technique (Johnson & Wichern, (1998) [13] is 

employed to test the significance of variation among all the 

five parameters considered simultaneously. The MANOVA 

model for comparing the population means vectors is as 

follows: 

 

ij i ijY V E  
          (4) 

 

Where, ijE is a vector of random error distributed as
(0, )PN 

. 

Here, the parameter vector 


is the overall mean and iV  

represents the model's status in (4); each component of the 

observation vector ijY
satisfies the univariate model, and the 

variance-covariance matrix  is the same for all populations.  

 

Variance Inflation Factor 

The variance inflation factor is used to measure how much the 

Variance of the estimated regression coefficient is inflated if 

the independent variables are correlated. VIF is calculated as  

 

2

1

1
VIF

R


            (5) 

 

Where the tolerance is simply the inverse of the VIF; the 

lower the tolerance, the more likely the multicollinearity 

among the variables. The value of VIF=1 indicates that the 

independent variables are not correlated. If the value of VIF is 

1 < VIF < 5, it specifies that the variables are moderately 

correlated. If the VIF value is above 5, there will be 

multicollinearity among the predictors in the regression model 

(Goldstein, (1993) [10] and Shrestha, (2020) [23]. Another one is 

the scatterplot graphical method that signifies the linear 

relationship between pairs of independent variables. It is 

essential to look for scatterplots that indicate a linear 

relationship between pairs of independent variables. The 

correlation coefficient is calculated using the formula: 

 

2 2 2 2

( ) ( )( )

( ) ( Y)

n XY x y
r

n X n Y

   


                (6) 

 

Where r is the correlation coefficient, n is the number of 

observations, X represents the first variable in the context, 

and Y is the second variable in the context. If the correlation 

coefficient value is higher with the pairwise variables, it 

indicates the possibility of collinearity (Young, (2018) [25]. 

 

Box's-M test 

The Box's-M-test for homogeneity of covariance matrices, 

introduced in 1949, examines the covariance matrices derived 

from multivariate normal data considering one or more 

classification factors. This test assesses the similarity between 

the separate covariance matrices by comparing the product of 

their log determinants to the log determinant of the combined 

covariance matrix, similar to a likelihood ratio test. The test 

statistic employs a chi-square approximation. 
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Wilk's lambda 

In discriminant analysis, Wilk's lambda is utilized to assess 

the contribution of each level of an independent variable to 

the model. This scale ranges from 0 to 1, where a value of 0 

indicates complete discrimination, while a value of 1 signifies 

no discrimination. To test the impact of each independent 

variable, it is successively included and excluded from the 

model, generating a Λ statistic. The significance of the change 

in Λ is evaluated using an F-test; if the computed F-value 

exceeds the critical value, the variable is retained in the model 

(Onwukwe, (2014)) [18]. Thus, a non-significant Wilks' 

lambda value is always preferred.  

 

( )
W

Wilks lamda
B W

 


        (7) 

 

B is the between-groups matrix, and W is the within-group 

matrix. The Eigenvalue can be explained as the ratio of the 

between-groups sum of squares to the within-group sum of 

squares (McGarigal et al., (2000)) [15]. 

 

Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is an extension 

of discriminant analysis; it shares ideas and techniques 

with multiple analyses of Variance (MANOVA). LDA aims 

to classify cases into three or more categories using 

continuous or dummy categorical variables as predictors 

(Cramer, (2003) [4], Jang et al., (2015)) [12]. The term DA 

(Fisher, (1936)) [8] refers to numerous types of analyses. DA 

is the most popular statistical technique to classify individuals 

or observations into non-overlapping groups based on scores 

derived from a suitable "statistical decision function" 

constructed from one or more continuous predictor variables. 

While investigating the differences between the groups or 

categories, the necessary step is to identify the attributes with

the most contributions to maximum reparability between 

known groups or categories to classify a given observation 

into one of the groups. For that purpose, DA successively 

identifies the linear combination of attributes known as 

canonical discriminant functions (equations) that contribute 

maximally to group separation. Predictive DA addresses the 

question of how to assign new cases to groups. 

The form of the Equation or function is: 

 

0 1 1 2 2 3 3 ...i i i i j ikD X X X X         
 

 

Where D is an independent variable and iD is the value of 

discriminant score from the ith category (i=1, 2…n), j
is the 

discriminant coefficient of jth attributes (j=0,1,2,…,k), and 

ikX
is the kth independent variable of ith category. This 

function is similar to a regression equation or function. There 

's  are unstandardized discriminant coefficients analogous 

to the ones in the regression equation. These 's maximize 

the distance between the means of the dependent variable, and 

the standardized discriminant coefficients can also be used, 

like beta weight in regression.  

 

Results and Discussion 

The descriptive statistics in Table 1 provide insights into the 

heart disease parameters. On average, patients are 

approximately 54 years old, with a resting blood pressure of 

around 131 mmHg. Cholesterol levels are notably higher, 

averaging at 246 mg/dL. The heart rate averages 149 beats per 

minute, indicating potential variability. ST depression is 

relatively low, averaging at 1.04 mm. Generally, while the 

skewness and kurtosis values suggest slight deviations from a 

normal distribution, further analysis is needed to understand 

the relationship between these parameters and heart disease 

risk. 

 
Table 1: Descriptive statistics for heart disease parameters 

 

Repressors Mean Std. Devi. Variance Skewness Kurtosis 

Age 54.37 9.08 82.48 -0.20 -0.54 

Resting Blood Pressure 131.62 17.54 307.59 0.71 0.93 

Cholesterol 246.26 51.83 2686.43 1.14 4.51 

Heart Rate 149.65 22.91 524.65 -0.54 -0.06 

ST Depression 1.04 1.16 1.35 1.27 1.58 

 

The Kolmogorov-Smirnov and Shapiro-Wilk tests were 

conducted (Table 2) to assess the normality of the 

distributions for heart disease parameters before and after 

applying the Box-Cox transformation. Before the 

transformation, all variables exhibited statistically significant 

deviations from normality (p< 0.05), with varying degrees of 

skewness. However, following the Box-Cox transformation, 

there was an improvement in the normality of the 

distributions for most variables, as indicated by non-

significant p-values (p > 0.05) in both tests. Specifically, Age, 

Resting Blood pressure, Cholesterol, Heart rate, and ST 

Depression. These results suggest that the Box-Cox 

transformation effectively normalized the distributions of 

heart disease parameters, rendering them more suitable for 

subsequent statistical analyses assuming normality, such as 

parametric tests. 

 
Table 2: Normality test for Heart disease parameters 

 

Before Box-Cox Method 

Repressors 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic DF Sig. Statistic DF Sig. 

Age 0.076 303 0.000 0.986 303 0.006 

Resting Blood Pressure 0.102 303 0.000 0.966 303 0.000 

Cholesterol 0.055 303 0.025 0.947 303 0.000 

Heart rate 0.071 303 0.001 0.976 303 0.000 

ST Depression 0.185 303 0.000 0.844 303 0.000 

After Box-Cox Method 

Repressors Kolmogorov-Smirnov Shapiro-Wilk 
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Statistic DF Sig. Statistic DF Sig. 

Age 0.108 204 0.071 0.957 204 0.125 

Resting Blood Pressure 0.081 204 0.113 0.985 204 0.072 

Cholesterol 0.040 204 0.200 0.988 204 0.080 

Heart rate 0.104 204 0.841 0.959 204 0.075 

ST Depression 0.121 204 0.533 0.940 204 0.093 

 

In Figure 1, the histogram brown curve shows the Gaussian 

distribution, while the histogram shows the 303 Heart disease 

parameters distribution. The top bars in the histogram match 

nicely with the Gaussian distribution; therefore, after the Box-

Cox method, the dataset was perfectly normally distributed. 

The points in the histogram plot form a bell-shaped line since 

the dataset's quintiles nearly match the dataset's quintiles, 

which would theoretically be the normally distributed dataset. 

 

 
 

Fig 1: Normality plot for Heart disease parameters 

 
Table 3: Multivariate analysis of variance for heart disease 

parameters 
 

Effect Value Sig. 

Pillai's Trace 0.994 0.000 

Wilks' Lambda 0.006 0.000 

Hotelling's Trace 168.257 0.000 

Roy's Largest Root 178.282 0.000 

 

Various multivariate tests, including Pillai's trace, Wilks' 

lambda, Hotelling's trace, and Roy's most significant root 

tests, were utilized to assess the collective variation of all five 

heart disease parameters across outcome groups. The 

outcomes of these tests are presented in Table 3. These 

MANOVA statistics offer insights into the multivariate 

effects of the analysis. Pillai's Trace, Wilks' Lambda, 

Hotelling's Trace, and Roy's Largest Root are all measures of 

the significance of the overall model. In this case, the 

extremely low p-value (0.000) indicates that the model has a 

significant overall effect. The values of these statistics 

(Ranging from 0.006 to 0.994) suggest the proportion of 

Variance in the dependent variables explained by the 

independent variables in the model. 
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Fig 2: Correlation matrix for Heart disease parameters 

 

The Pearson correlation between the study variables' Heart 

disease parameters has been calculated. It is depicted in 

Figure – 2. The upper triangular matrix shows the Pearson 

correlation and its significance level (as stars). Each 

significance level is associated with a symbol p-values 0.001 

(***), 0.01 (**), and 0.05 (*). The results reveal significant 

correlations between Age and resting blood pressure (0.28), 

cholesterol, and ST depression (0.21). Additionally, Age 

exhibits a strong negative correlation with Maximum Heart 

Rate (0.40). ST Depression shows positive correlations with 

Age (0.21) and Cholesterol (0.91) and a negative correlation 

with Maximum Heart Rate (-0.34). These findings indicate 

interdependencies among the independent variables across 

multiple measures (p measures). 

 
Table 4: Multicollinearity for Heart disease parameters 

 

Repressors 
Unstandardized Coefficients Standardized Coefficients 

T Sig. 
Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

(Constant) 0.06 0.32 
 

0.20 0.84 
  

Age 0.00 0.00 -0.01 -0.15 0.88 0.74 1.35 

Resting BP 0.00 0.00 -0.06 -1.18 0.24 0.89 1.13 

Cholesterol 0.00 0.00 -0.06 -1.11 0.27 0.94 1.06 

Heart rate 0.01 0.00 0.31 5.44 0.00 0.75 1.33 

ST depression -0.13 0.02 -0.31 -5.75 0.00 0.85 1.18 

 

The coefficients in Table 4 depict the relationship between the 

model's independent variables (heart disease parameters) and 

the dependent variable. The standardized coefficients (Beta) 

indicate the strength and direction of the relationship, while 

the t-values and significance levels (Sig.) indicate the 

statistical significance of each coefficient. Collinearity 

statistics such as Tolerance and VIF assess multicollinearity 

among the independent variables. In this model, heart rate and 

ST depression exhibit statistically significant relationships 

with the dependent variable, with heart rate demonstrating a 

positive relationship and ST depression showing a negative 

relationship. However, Age, resting blood pressure, and 

cholesterol do not show statistically significant relationships. 

Furthermore, all variables exhibit acceptable levels of 
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multicollinearity, as indicated by Variance Inflation Factor 

(VIF) values in Table 5. 

 
Table 5: Results of Box's M method 

 

Box's M 79.376 

Approx. 5.197 

df1 15 

df2 340980.412 

Sig. 0.071 

Box's M test results in Table 5 are a diagnostic tool used to 

assess the equality of covariance matrices across groups. It 

evaluates whether the assumption of homogeneity of 

covariance matrices (Homoscedasticity) is violated. The p-

value (Sig.) of 0.071 suggests no significant violation of this 

assumption, indicating that the covariance matrices are 

approximately equal across groups. Therefore, the assumption 

of homogeneity of covariance matrices is met, ensuring the 

reliability of interpreting the results. 

 
Table 6: Wilks Lambda Test Statistics 

 

Test of Function (s) Wilks' Lambda Chi-square DF Sig. 

1 0.722 97.423 5 0.000 

 

In Table 6, "Function 1" refers to the specific function being 

tested. The Wilks' Lambda value of 0.722 indicates the 

proportion of Variance in the dependent variables not 

accounted for by the independent variables. The associated 

Chi-square statistic of 97.423, with 5 degrees of freedom 

(DF), results in a highly significant p-value (Sig.) of 0.000. 

This suggests that the overall model or the specific function 

being tested significantly affects the dependent variables. 

 
Table 7: Eigenvalues for the first function 

 

Function Eigenvalue % of Variance Cumulative% Canonical Correlation 

1 .386 100.0 100.0 .528 

 

In Table 7, the Eigenvalue of 0.386 indicates the amount of 

Variance explained by Function 1. With a percentage of 

Variance of 100.0%, Function 1 accounts for the entire 

Variance in the data, as reflected by the Cumulative%. The 

Canonical Correlation of 0.528 represents the correlation 

between the observed and canonical variables derived from 

the function. 

 
Table 8: Canonical Discriminant Function Coefficients 

 

 Constant Age Resting BP Cholesterol Heart rate ST Depression 

Function 1 0.002 0.008 0.002 -0.03 0.59 2.145 

 

The coefficients in Table 8 indicate the weights assigned to 

each variable in the canonical discriminant function. These 

coefficients signify the magnitude and direction of the 

relationship between each predictor variable (heart disease 

parameters) and the discriminant function. Positive 

coefficients suggest a positive association with the function 

(heart rate and ST depression), while negative coefficients 

(Age, resting blood pressure, and cholesterol) imply a 

negative association. The values reflect the relative 

importance of each variable in discriminating between groups 

or explaining the variability in the data. 

 
Table 9: Fisher linear Discriminant Function 

 

Repressors Non-Disease Disease 

(Constant) 0.862 0.859 

Age 0.294 0.284 

Resting BP 0.047 0.044 

Cholesterol 0.456 0.493 

Heart rate 1.540 0.807 

ST depression -83.691 -86.289 

 

The Fisher linear discriminant coefficients results in Table 9 

represent the relationship between each heart disease 

parameter and disease status (non-disease or disease) in a 

linear discriminant analysis. Positive coefficients indicate an 

increase in the value of the heart disease parameter associated 

with the specified disease status, while negative coefficients 

indicate a decrease. The constant term represents the intercept 

of the linear discriminant function for each disease status 

group. The equations representing the relationship between 

each heart disease parameter and disease status in the linear 

discriminant analysis are as follows. 

 

Non-Disease (YND) = 0.862 + 0.29*4Age + 0.047*Resting BP + 

0.456*Cholesterol + 1.540*Heart Rate-83.691*ST Depression  

 

Disease (YD) = 0.859 + 0.284*Age + 0.044*Resting BP + 

0.493*Cholesterol + 0.807*Heart Rate-86.289*ST Depression 

 

These equations, YND and YD, represent the discriminant 

scores for non-disease and disease groups based on the given 

heart disease parameters. 

The coefficients of each heart disease parameter in the linear 

discriminant weights are depicted in Figure 3. This 

discriminant function exhibits a notably high positive 

correlation with stress depression followed by age, resting 

blood pressure, and cholesterol. Additionally, Heart rate heart 

disease parameters demonstrate negative correlations with the 

outcome of the heart disease. Consequently, another five heart 

disease parameters are significantly influenced by gender. 

The confusion matrix in Table 10 outlines the classification 

performance of a model for heart disease prediction. It 

accurately distinguishes between individuals with and without 

heart disease, achieving an overall accuracy of 72.9%. 
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Fig 3: Association of different heart disease parameters with the discriminant function 

 
Table 10: Classification table 

 

Target 
Predicted Group Membership 

Total 
0 1 

Non-Disease 93 45 138 

Disease 37 128 165 

Overall Accuracy: 72.9% 

 

Conclusion 

In this study, the Heart disease parameter dataset analysis 

reveals valuable insights into population characteristics. The 

dataset represents a diverse population and includes 

comprehensive information on heart disease parameters. 

Descriptive statistics highlight variability and distribution 

characteristics, while normality tests indicate the effectiveness 

of transformation methods. Also, this study highlights 

significant correlations among key heart disease parameters 

such as Age, blood pressure, cholesterol levels, and ST 

depression. Discriminant analysis effectively identifies 

combinations of these parameters that discriminate between 

outcome groups, enhancing our understanding of heart disease 

biology. Multivariate analysis reveals variations in heart 

disease parameters across demographics, emphasizing the 

importance of individual characteristics in risk assessment 

and intervention strategies. Normalizing data using the Box-

Cox method ensures the validity of our analyses.  

The confusion matrix reflects the classification accuracy of a 

heart disease prediction model, achieving 72.9% overall 

accuracy in distinguishing between individuals with and 

without heart disease. These findings contribute to developing 

more accurate predictive models and targeted interventions to 

alleviate the burden of heart disease on public health and 

individual well-being. 
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