International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452

Maths 2022; 7(6): 110-115
© 2022 Stats \& Maths www.mathsjournal.com
Received: 14-09-2022
Accepted: 16-10-2022

Amit Kumar

Research Scholar, Department of Mathematics J.P. University,
Chapra, Bihar, India

Ram Narayan Roy

Retired Associate Professor
Department of Mathematics J.P. University, Chapra, Bihar, India

Corresponding Author:

Amit Kumar
Research Scholar, Department of Mathematics J.P. University, Chapra, Bihar, India

Finite single integral representation for the multivariable generalized polynomial Set $A_{n}\left\{\left(\mathbf{x}_{m}\right), y\right\}$

Amit Kumar and Ram Narayan Roy

Abstract

In the present paper, an attempt has been made to express a Finite Single Integral Representation for the Multivariable Generalized polynomial set $\operatorname{An}\{(x m), y\}$. Many interesting new results may be obtained as particular cases on separating the parameters.
AMS Subject Classification: Special function-33 (C)
Keywords: Integral representation, lauricella function hypergeometric function

Introduction

We obtained the multivariable generalized polynomial set $A n\{(x m), y\}$ by means of generating relation
$e^{\mu t^{e}} F\left[\begin{array}{c}p_{z},\left(a_{g}\right) ; \\ \lambda y^{-\mu, e_{1}} t^{e_{1}} \\ \left(b_{\square}\right) ;\end{array}\right]$
$\times F\left[\begin{array}{l}\left(A_{r}\right) ;\left(C_{p}\right) ;\left(\alpha_{u_{m}}\right) \\ \left(B_{s}\right) ;\left(D_{q}\right) ;\left(\beta_{v_{m}}\right)\end{array} x^{d} t, \lambda_{2} x_{2}^{\square_{2}} y^{-\mu_{2} \square_{2}} \ldots \ldots \lambda_{m} x_{m}^{\square_{m}} t^{\square m}\right]$
$=\sum_{n=0}^{\infty} A_{n, e ; e_{1} ; e_{2} ; \ldots . . e_{m} ;\left(b_{\square}\right) ;\left(B_{S}\right) ;\left(D_{q}\right) ;\left(\beta_{v_{m}}\right)}^{v ; \mu ; \alpha ; \mu_{1} ; \mu_{2} ; \lambda ; \lambda_{1} ; \lambda_{2} \ldots . \lambda_{m}, d\left(a_{g}\right) ;\left(A_{r}\right) ;\left(C_{p}\right) ;\left(\alpha_{u_{m}}\right)}\left\{\left(x_{m}\right), y\right\} t^{n}$
wherev, $\mu, \mu_{1}, \mu_{2}, \lambda, \lambda_{1}, \lambda_{2}, \ldots \ldots \lambda_{m}, d$ are real and e, e_{1} are non-negative integer and $e_{2} \ldots$ e_{m} are natural number.
The left hand side of (1.2) are contains the product of generalized hypergeometric function and Lauricella function in the notation of Burchnall and Chaundy [2]. The polynomial set contains number of parameters for simplicity we shall denote
$A_{n, e ; e_{1} ; e_{2} ; \ldots . . . e_{m} ;\left(b_{\square}\right) ;\left(B_{s}\right) ;\left(D_{q}\right) ;\left(\beta_{v_{m}}\right)}^{v ; \mu ; \alpha ; \mu_{1} ; \mu_{2} ; \lambda \lambda \lambda_{1} ; \lambda_{2} \ldots . . \lambda_{m}, d ;\left(a_{g}\right) ;\left(A_{r}\right) ;\left(c_{p}\right) ;\left(\alpha_{u_{m}}\right)}\left\{\left(x_{m}\right), y\right\}$ by $A_{n}\left\{\left(x_{m}\right), y\right\}$.
where n denotes the order of the polynomial set.

2. Notations

A. (i) $(n)=1,2, \ldots \ldots n-1, n$.
(ii) $\left(a_{p}\right)=a_{1}, a_{2}, a_{3}, \ldots \ldots a_{p}$.
(iii) $\left(a_{p} ; i\right)=a_{1}, a_{2}, a_{3}, \ldots \ldots a_{i-1}, a_{i+1} \ldots \ldots a_{p}$.
B. (i) $\left[\left(a_{p}\right)\right]=a_{1}, a_{2}, a_{3} \ldots \ldots a_{p}$.
(ii) $\left[\left(a_{p}\right)\right]_{n}=\prod_{i=1}^{p}\left(a_{i}\right)_{n}=\left(a_{1}\right)_{n}\left(a_{2}\right)_{n}\left(a_{3}\right)_{n} \ldots\left(a_{p}\right)_{n}$
C. (i) $\Delta(a ; b)=\frac{b}{a}, \frac{b+1}{a}+\cdots \ldots \frac{b+a-1}{a}$.
(ii) $\Delta(a(1) ; b)=\frac{b}{a}, \frac{b+1}{a}, \frac{b+2}{a}, \ldots \ldots \frac{b+a-2}{a}$
(iii) $\Delta(a ; b \pm c \pm d)=\Delta(a ; b+c+d), \Delta(a ; b+c-d)$,
$\Delta(a ; b-c+d), \Delta(a ; b-c-d)$,
D. (i) $\Delta_{k}[a ; b]=\prod_{r=1}^{a}\left(\frac{b+r-1}{a}\right)_{k}=\left(\frac{b}{a}\right)_{k}\left(\frac{b+1}{a}\right)_{k} \ldots\left(\frac{b+a-1}{a}\right)_{k}$.
(ii) $\Delta_{k}[a(1) ; b]=\left(\frac{b}{a}\right)_{k}\left(\frac{b+1}{a}\right)_{k} \ldots\left(\frac{b+a-2}{a}\right)_{k}$.
(iii) $\Delta_{k}\left[m ;\left(a_{p}\right)\right]=\prod_{i=1}^{b} \prod_{r=1}^{m}\left(\frac{a_{i}+r-1}{m}\right)_{k}$.
E. (i) $\Gamma\left[\left(a_{p}\right)\right]=\prod_{i=1}^{p}\left(a_{i}\right)$.
(ii) $\Gamma\left[\left(a_{p}\right) ;(s)\right]=\prod_{i=s+1}^{p}\left(a_{i}\right)$.
(iii) $\Gamma[(a ; b)]=\prod_{r=1}^{a} \Gamma\left(\frac{b+r-1}{a}\right)$
(iv) $\Gamma\left[\Delta(m) ;\left(a_{p}\right)\right]=\prod_{i=1}^{p} \prod_{r=1}^{m} \Gamma\left(\frac{\left(a_{i}\right)+r-1}{m}\right)$
F. (i) $\Gamma(a \pm b)=\Gamma(a+b) \Gamma(a-b)$.
(ii) $\Gamma_{* *}(a+b)=\Gamma(a+b) \Gamma(a+b)$
$M=\frac{\left[\left(A_{r}\right)\right]_{n}\left[\left(c_{p}\right)\right]_{n}\left(\lambda x_{1}^{d}\right)^{n}}{\left[\left(B_{S}\right)\right]_{n}\left[\left(D_{q}\right)\right]_{n}^{n!}}$

3. Theore

For $e_{2}>1, e_{3}>1 \ldots \ldots e_{m}>1$
$A_{n}\left\{\left(x_{m}\right), y\right\}=\frac{\Gamma(1+a) \Gamma(1+a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d)}{\Gamma(d) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma(1+a-2 d) \Gamma(1+a-b-c-d)}$
$\times \int_{0}^{\prime} x_{1}^{d-1}\left(1-x_{1}\right)^{a-2 d}{ }_{4} F_{3}\left[\begin{array}{c}a, 1+\frac{a}{2}, b, c ; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c ;\end{array}\right]$
$\times F_{r+p: h: \beta_{u_{1}}, \beta_{u_{2}} \ldots \ldots \beta_{u_{m}}}^{1+s+q: g: \alpha_{u_{1}}, \alpha_{u_{2}} \ldots \ldots . \alpha_{u_{m}}}\left[\begin{array}{l}\left.(-n): e, e_{1}, e_{2} ; \ldots . e_{m}\right] \\ -\end{array}\right.$
$\left[\left(1-\left(B_{s}\right)-n\right): e, e_{1}, e_{2}-1 \ldots e_{m}-1\right],\left[\left(1-\left(D_{q}\right)-n\right): e, e_{1}, e_{2} ; \ldots e_{m}\right]\left[\left(a_{g}\right) ; 1\right]$
$\left[\left(1-\left(A_{r}\right)-n\right): e, h_{1}, e_{2}-1 \ldots e_{m}-1\right],\left[\left(1-\left(C_{p}\right)-n\right): e, e_{1}, e_{2} ; \ldots \ldots e_{m}\right]\left[\left(b_{h}\right) ; 1\right]$
$\left[\left[\left(\alpha_{u_{1}}\right): 1\right],\left[\left(\alpha_{u_{2}}\right): 1\right] \ldots \ldots\left[\left(\alpha_{u_{m}}\right): 1\right]\left[\left(v_{z}\right): 1\right],[(1+a-2 d): 2][1+a-b-c-d ; 1]\right.$,
$\left[\left(\beta_{v_{1}}\right): 1\right],\left[\left(\beta_{v_{2}}\right): 1\right] \ldots \ldots\left[\left(\beta_{v_{m}}\right): 1\right],[(d): 1][(1+a-c-d): 1][(1+a-c-d): 1]$,
$\frac{\mu(-1)^{e(r+s+p+q+g+h+1)}}{\left(\lambda x_{1}^{d}\right)^{e}}, \frac{\lambda_{1}(-1)^{e_{1}(r+s+p+q+g+h+1)}}{\left(\lambda x_{1}^{d} y^{\mu_{1}}\right)^{e_{1}}}, \ldots \ldots$
$\left.\frac{\lambda_{2} x_{2}^{e_{2}}(-1)^{e_{2}(r+s+p+q+g+h+1)+r+s}}{\left(\lambda x_{1}^{d} y^{\mu_{2}}\right)^{e_{2}}}, \frac{\lambda_{m} x_{m}^{e_{m}}(-1)^{e_{m}(r+s+p+q+g+h+1)+r+s}}{\left(\lambda x_{1}^{d}\right)^{e_{m}}}\right] d x$
Provided that $\operatorname{Re}(d), \operatorname{Re}(a-2 d)>-1$ and $\operatorname{Re}(b+c+d-a)>-1$.
Proof: we have
$I_{1}=\int_{0}^{\prime} x_{1}^{d-1}\left(1-x_{1}\right)^{a-2 d}{ }_{4} F_{3}\left[\begin{array}{c}a, 1+\frac{a}{2}, b, c ; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c ;\end{array}\right]$
$\times \sum_{k=0}^{\left[\frac{n}{e}\right]} \sum_{k_{1}=0}^{\left[\frac{n-e k}{e_{1}}\right]} \sum_{k_{2}=0}^{\left[\frac{n-e k-e_{1} k_{1}}{e_{2}}\right]} \ldots \ldots \sum_{k_{m}=0}^{\left[\frac{n-e k-e_{1} k_{1} \ldots \ldots .-e_{m-1} k_{m-1}}{e_{m}}\right]}$

$\times \frac{\left[\left(a_{g}\right)\right]_{k_{1}}\left(v_{z}\right)_{k_{1}} \mu^{k} \lambda_{1}^{k_{1}}\left(\lambda_{2} x_{2}^{e_{2}}\right)^{k_{2}} \ldots\left(\lambda_{m} x_{m}^{e_{m}}\right)^{k_{m}}\left(\lambda x_{1}^{d}\right)^{n+e k+e_{1} k_{1}+e_{2} k_{2}+\cdots \ldots+e_{m} k_{m}}}{\left[\left(b_{h}\right)\right]_{k_{1}} k!k_{1}!k_{2}!y^{\mu_{1} e_{1} k_{1}+\mu_{2} e_{2} k_{2} k_{m}!\left(n-e k-e_{1} k_{1}-e_{2} k_{2} \ldots \ldots e_{m} k_{m}\right)!}}$
$\times \frac{(1-a-2 d)_{2 k_{1}}(1+a-b-c-d)_{k_{1}}}{(d)_{k_{1}}(1+a-b-d)_{k_{1}}(1+a-c-d)_{k_{1}}}$
$\times \frac{\left[\left(\alpha_{u_{1}}\right)\right]_{k_{1}}\left[\left(\alpha_{u_{2}}\right)\right]_{k_{2}} \cdots \cdots .\left[\left(\alpha_{u_{m}}\right)\right]_{k_{m}} d x_{x}}{\left[\left(\beta_{v_{1}}\right)\right]_{k_{1}}\left[\left(\beta_{v_{2}}\right)\right]_{k_{2}} \ldots \ldots .\left[\left(\beta_{v_{m}}\right)\right]_{k_{m}}}$
$=\int_{0}^{\prime} x_{1}^{d+k_{1}-1}\left(1-x_{1}\right)^{a-2 d-2 k_{1}}{ }_{4} F_{3}\left[\begin{array}{c}a, 1+\frac{a}{2}, b, c ; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c ;\end{array}\right]$
$\times \sum_{k=0}^{\left[\frac{n}{e}\right]} \sum_{k_{1}=0}^{\left[\frac{n-e k}{e_{1}}\right]} \sum_{k_{2}=0}^{\left[\frac{n-e k-e_{1} k_{1}}{e_{2}}\right]} \ldots \ldots \sum_{k_{m}=0}^{\left[\frac{n-e k-e_{1} k_{1} \ldots \ldots-e_{m-1} k_{m-1}}{e_{m}}\right]}$
$\times \frac{\left[\left(A_{r}\right)\right]_{n-e k-e} k_{1}-\left(e_{2}-1\right) k_{2}-\cdots \ldots-\left(e_{m}-1\right) k_{m}\left[\left(C_{p}\right)\right]_{n-e k-e_{1} k_{1}-e_{2} k_{2}-\cdots \ldots-e_{m} k_{m}}\left[\left(a_{g}\right)\right]_{k_{1}}\left(v_{z}\right)_{k_{1}} \mu^{k} \lambda_{1}^{k_{1}}}{\left[\left(B_{S}\right)\right]_{n-e k-e_{1} k_{1}-\left(e_{2}-1\right) k_{2}-\cdots \ldots-\left(e_{m-1}\right) k_{m}\left[\left(D_{q}\right)\right]_{n-e k-e_{1} k_{1}-e_{2} k_{2}-\cdots \ldots-e_{m} k_{m}}\left[\left(b_{h}\right)\right]_{k_{1}} k!k_{1}!k_{2}!}}$
$\times \frac{\left(\lambda_{2} x_{2}^{e_{2}}\right)^{k_{2}} \ldots\left(\lambda_{m} x_{m}^{e_{m}}\right)^{k_{m}}\left(\lambda x_{1}^{d}\right)^{n+e k+e_{1} k_{1}+e_{2} k_{2}+\cdots \ldots+e_{m} k_{m}}}{y^{\mu_{1} e_{1} k_{1}+\mu_{2} e_{2} k_{2} k_{m}!\left(n-e k-e_{1} k_{1}-e_{2} k_{2} \ldots \ldots e_{m} k_{m}\right)!}}$
$\times \frac{\left[\left(\alpha_{u_{1}}\right)\right]_{k_{1}}\left[\left(\alpha_{u_{2}}\right)\right]_{k_{2}} \cdots \ldots\left[\left(\alpha_{u_{m}}\right)\right]_{k_{m}}(1-a-2 d)_{2 k_{1}}(1+a-b-c-d)_{k_{1}} d x_{x}}{\left[\left(\beta_{v_{1}}\right)\right]_{k_{1}}\left[\left(\beta_{v_{2}}\right)\right]_{k_{2}} \cdots \ldots\left[\left(\beta_{v_{m}}\right)\right]_{k_{m}}(d)_{k_{1}}(1+a-b-d)_{k_{1}}(1+a-c-d)_{k_{1}}}$
$\times \sum_{k=0}^{\left[\frac{n}{e}\right]} \sum_{k_{1}=0}^{\left[\frac{n-e k}{e_{1}}\right]} \sum_{k_{2}=0}^{\left[\frac{n-e k-e_{1} k_{1}}{e_{2}}\right]} \ldots \ldots \sum_{k_{m}=0}^{\left[\frac{n-e k-e_{1} k_{1} \ldots \ldots-e_{m-1} k_{m-1}}{e_{m}}\right]} \frac{\left[\left(A_{r}\right)\right]_{n-e k-e_{1} k_{1}-\left(e_{2}-1\right) k_{2}-\cdots \ldots-\left(e_{m}-1\right) k_{m}}^{\left[\left(B_{S}\right)\right]_{n-e k-e} k_{1}-\left(e_{2}-1\right) k_{2}-\cdots \cdots-\left(e_{m}-1\right) k_{m}}}{n}$
$\times \frac{\left[\left(C_{p}\right)\right]_{n-e k-e_{1} k_{1}-e_{2} k_{2}-\cdots \ldots-\left(e_{m}-1\right) k_{m}}\left[\left(a_{g}\right)\right]_{k_{1}}\left(v_{z}\right)_{k_{1}}\left[\left(\alpha_{u_{1}}\right)\right]_{k_{1}}}{\left[\left(D_{q}\right)\right]_{n-e k-e_{1} k_{1}-e_{2} k_{2}-\cdots \ldots-\left(e_{m}-1\right) k_{m}}\left[\left(b_{h}\right)\right]_{k_{1}}\left[\left(\beta_{v_{1}}\right)\right]_{k_{1}}}$
$\times \frac{\left[\left(\alpha_{u_{2}}\right)\right]_{k_{2}} \ldots \ldots\left[\left(\alpha_{u_{m}}\right)\right]_{k_{m}} \mu^{k} \lambda_{1}^{k_{1}}\left(\lambda_{2} x_{2}^{e_{2}}\right)^{k_{2}} \ldots\left(\lambda_{m} x_{m}^{e_{m}}\right)^{k_{m}}\left(\lambda x_{1}^{d}\right)^{n+e k+e_{1} k_{1}+e_{2} k_{2}+\cdots \ldots+e_{m} k_{m}}}{\left[\left(\beta_{v_{2}}\right)\right]_{k_{2}} \ldots \ldots .\left[\left(\beta_{v_{m}}\right)\right]_{k_{m}} k!k_{1}!k_{2}!y^{\mu_{1} e_{1} k_{1}+\mu_{2} e_{2} k_{2} k_{m}!\left(n-e k-e_{1} k_{1}-e_{2} k_{2} \ldots \ldots e_{m} k_{m}\right)!}}$
$\times \frac{(1-a-2 d)_{2 k_{1}}(1+a-b-c-d)_{k_{1}} \Gamma\left(d+k_{1}\right) \Gamma(1+a-b) \Gamma(1+a-c)}{(d)_{k_{1}}(1+a-b-d)_{k_{1}}(1+a-c-d)_{k_{1}} \Gamma(1+a) \Gamma(1+a-b-c)}$
$\times \frac{\Gamma\left(1+a-2 d-2 k_{1}\right) \Gamma\left(1+a-b-c-d-k_{1}\right) \Gamma\left(1+a-b-c-d+k_{1}\right)}{\Gamma\left(1+a-b-d-k_{1}\right) \Gamma\left(1+a-c-d-k_{1}\right)}$
$=\frac{\Gamma(d) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma(1+a-2 d) \Gamma(1+a-b-c-d)}{\Gamma(1+a) \Gamma(1+a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d)}$

$\times \frac{\left[1-\left(D_{q}\right)-n\right]_{e k+e_{1} k_{1}+e_{2} k_{2}+\cdots \ldots+e_{m} k_{m}}\left[\left(a_{g}\right)\right]_{k_{1}}\left(v_{z}\right)_{k_{1}}}{\left[1-\left(C_{p}\right)-n\right]_{e k+e_{1} k_{1}+e_{2} k_{2}+\cdots \ldots+e_{m} k_{m}}^{\left[\left(b_{h}\right)\right]_{k_{1}}}}$
$\times \frac{\left[\left(\alpha_{u_{1}}\right)\right]_{k_{1}}\left[\left(\alpha_{u_{2}}\right)\right]_{k_{2}} \ldots \ldots .\left[\left(\alpha_{u_{m}}\right)\right]_{k_{m}} \mu^{k}(-1)^{e(r+s+p+q+1+g+h) k}}{\left[\left(\beta_{v_{1}}\right)\right]_{k_{1}}\left[\left(\beta_{v_{2}}\right)\right]_{k_{2}} \cdots \ldots .\left[\left(\beta_{v_{m}}\right)\right]_{k_{m}}\left(\lambda x_{1}^{d}\right)^{e k} k!}$
$\times \frac{\lambda_{1}\left(v_{z}\right)_{k_{1}}(-1)^{e_{1}(r+s+p+q+g+h+1) k_{1}}\left(\lambda_{2} x_{2}^{e_{2}}\right)^{k_{2}}(-1)^{e_{2}\{(r+s+p+q+g+h+1) r+s\} k_{2}}}{\left(\lambda x_{1}^{d}\right)^{e_{1} k_{1}} y^{\mu_{1} e_{1} k_{1}\left(\lambda x_{1}^{d} y^{\mu_{2}}\right)^{e_{2} k_{2}}}}$
$\times \frac{\cdots\left(\lambda_{m} x_{m}^{e_{m}}\right)^{k_{m}}(-1)^{\left\{e_{m}(r+s+p+q+g+h+1) r+s\right\} k_{m}}(-n)_{e k+e_{1} k_{1}+e_{2} k_{2}+\cdots . . .+e_{m} k_{m}}}{\left(\lambda x_{1}^{d}\right)^{e_{m} k_{m}}}$
The single terminating factor makes all summation in (3.2) runs upto ∞.
Then we finally achieve.
$=\frac{\Gamma(d) \Gamma(1+a-b) \Gamma(1+a-2 d) \Gamma(1+a-b-c-d) \Gamma(1+a-c) A_{n}\left\{\left(x_{m}\right), y\right\}}{\Gamma(1+a) \Gamma(1-a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d)}$
Hence the proof.
We have from ${ }^{[3]}$
$\int_{0}^{\prime} x_{1}^{d-1}\left(1-x_{1}\right)^{a-2 d}{ }_{4} F_{3}\left[\begin{array}{c}a, 1+\frac{a}{2}, b, c ; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c ;\end{array}\right]$
$=\frac{\Gamma(d) \Gamma(1+a-2 d) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma(1+a-b-c-d)}{\Gamma(1+a) \Gamma(1-a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d)}$
Provided that $\operatorname{Re}(d), \operatorname{Re}(a-2 d)>-1$ and $\operatorname{Re}(b+c+d-a)>-1$.

Particular Cases of (3.1)

(i) If we take $r=0=s=p=q=\alpha_{u_{1}}=\beta_{v_{1}} ; g=p=q ; \mu=1=z=e=e_{1}=\lambda_{1}=\lambda=d=m_{1}=\mu_{1}=y ; x_{1}=\frac{1}{x^{\prime}}$, we get
$1 F_{1}(-n ; b ; x)=\frac{\Gamma(1+a) \Gamma(1+a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d)}{\Gamma(d) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma(1+a-2 d) \Gamma(1+a-b-c-d)}$
$\times \int_{0}^{\prime} x_{1}^{d-1}\left(1-x_{1}\right)^{a-2 d}{ }_{4} F_{3}\left[\begin{array}{c}a, 1+\frac{a}{2}, b, c ; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c ;\end{array}\right]$
$\times F\left[\begin{array}{c}-n, \Delta(2: 1+a-2 d),(1+a-c-d)\left(a_{p}\right) ; \\ x_{1} \\ d, 1+a-b-d, 1+a-c-d,\left(b_{q}\right) ;\end{array}\right] d x_{1}$
where $1 F_{1}[-n, b ; x]$ are the Abdul-Halim and Al-Salam Polynomials [03].
(ii) On putting $r=0=s=p=q=u_{\alpha_{1}}=v_{\beta_{1}} ; g=h ; z=1=\mu_{1}=d=y=\lambda=\mu=e=e_{1}=a_{1}=b_{1} ; x_{1}=y ; \mu_{1}=1+\lambda_{2}$, we get $A_{n}^{\lambda_{2}}(y)=\frac{\Gamma(1+a) \Gamma(1+a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d) y^{n}}{\Gamma(d) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma(1+a-2 d) \Gamma(1+a-c-d) n!}$
$\times \int_{0}^{\prime} x_{1}^{d-1}\left(1-x_{1}\right)^{a-2 d}{ }_{4} F_{3}\left[\begin{array}{c}a, 1+\frac{a}{2}, b, c ; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c ;\end{array}\right]$
$\times F\left[\begin{array}{c}-n, \Delta(2: 1+a-2 d),(1+a-c-d) 1+\lambda_{2} ; \\ \frac{1}{y} \\ d, 1+a-b-d, 1+a-c-d ;\end{array}\right] d x_{1}$
where $A_{n}^{\lambda_{2}}(y)$ are the Srivastava Polynomials ${ }^{[4]}$.
(iii) For $r=0=s=p=g=h=\alpha_{u_{1}}=\beta_{v_{1}} ; p=1=e=e_{1}=d=x_{2}=x_{m}=y=\mu=z=v ; x_{1}=\frac{1}{y} ; c_{1}=1+\lambda, \lambda=-1$, we get $A_{n}^{\lambda}(y)=\frac{\Gamma(1+a) \Gamma(1+a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d)(1+\lambda)_{n}(-1)^{n} y^{n}}{n!\Gamma(d) \Gamma(1-a+b) \Gamma(1+a-b-c) \Gamma(1+a-2 d) \Gamma(1+a-b-c-d)}$
$\times \int_{0}^{\prime} x_{1}^{d-1}\left(1-x_{1}\right)^{a-2 d}{ }_{4} F_{3}\left[\begin{array}{c}a, 1+\frac{a}{2}, b, c ; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c ;\end{array}\right]$
$\times F\left[\begin{array}{c}-n, \Delta(2 ; 1+a-2 d), 1+a-b-c-d ; \\ -y \\ -\lambda-n, d, 1+a-b-d, 1+a-c-d ;\end{array}\right] d x_{1}$
Where $L_{n}^{(\alpha)}(y)$ are the Srivastava Polynomials ${ }^{[5]}$.
(iv) On making the substitution $r=0=p=q=s=g=\alpha_{u_{1}}=\beta_{v_{1}} ; h=1=e=e_{1}=d=v=x=\lambda=\mu_{1} ; b_{1}=1+\alpha$, and $x_{1}=\frac{1}{y}$, we get
$L_{n}^{(\alpha)}(y)=\frac{\Gamma(1+\alpha)_{n} \Gamma(1+a) \Gamma(1+a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d)}{n!y^{n} \Gamma(d) \Gamma(1-a-b) \Gamma(1+a-b-c) \Gamma(1+a-2 d) \Gamma(1+a-b-c-d)}$
$\times \int_{0}^{\prime} x_{1}^{d-1}\left(1-x_{1}\right)^{a-2 d}{ }_{4} F_{3}\left[\begin{array}{c}a, 1+\frac{a}{2}, b, c ; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c ;\end{array}\right]$
$\times F\left[\begin{array}{c}-n, \Delta(2 ; 1+a-2 d), 1+a-b-c-d ; \\ y \\ 1+\alpha, d, 1+a-b-d, 1+a-c-d ;\end{array}\right] d x_{1}$
where $L_{n}^{(\alpha)}(y)$ are the Laguerre Polynomials.
(v) For $r=0=s=p=s=\alpha_{u_{1}}=\beta_{v_{1}} ; q=h=e=e_{1}=d=v_{z}=\mu_{1} ; \lambda=\frac{1}{2}=\lambda_{1}, D_{1}=\frac{1}{2}=b_{1}$; and $x_{1}=\frac{x-1}{x+1}$, we get
$T_{n}\left(x_{1}\right)=\frac{\Gamma(1+a) \Gamma(1+a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-b-c-d)\left(\frac{x-1}{2}\right)^{n}}{\Gamma(d) \Gamma(1-a-b) \Gamma(1+a-b-c) \Gamma(1+a-2 d) \Gamma(1+a-b-c-d)}$
$\times \int_{0}^{\prime} x_{1}^{d-1}\left(1-x_{1}\right)^{a-2 d}{ }_{4} F_{3}\left[\begin{array}{c}a, 1+\frac{a}{2}, b, c ; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c ;\end{array}\right]$
$\times F\left[\begin{array}{c}-n,-\frac{1}{2}-n, \Delta(2 ; 1+a-2 d), 1+a-b-c-d ; \\ x_{1} \\ \frac{1}{2}, d, 1+a-b-d, 1+a-c-d ;\end{array}\right] d x_{1}$
Where, $T_{n}(x)$ are the Tchebicheffe Polynomials.
(vi) For the value of $r=0=s=p=g=\alpha_{u_{1}}=\beta_{v_{1}} ; q=1=h=e=e_{1}=d=v_{z}=\mu_{1} ; \lambda=\frac{1}{2}=\lambda_{1}, D_{1}=\frac{3}{2}=b_{1}$; and $\frac{x-1}{x+1}$ for x_{1}, we get
$U_{n}(x)=\frac{\Gamma(1+a) \Gamma(1+a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d)\left(\frac{x-1}{2}\right)^{n}}{\Gamma(d) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma(1+a-2 d) \Gamma(1+a-b-c(-d)}$
$\times \frac{(x-1)!}{n!} \int_{0}^{\prime} x_{1}^{d-1}\left(1-x_{1}\right)^{a-2 d}{ }_{4} F_{3}\left[\begin{array}{c}a, 1+\frac{a}{2}, b, c ; \\ \frac{x+1}{x-1} \\ \frac{a}{2}, 1+a-b, 1+a-c ;\end{array}\right]$
$\times F\left[\begin{array}{c}-n,-\frac{1}{2}-n, \Delta(2 ; 1+a-2 d), 1+a-b-c-d ; \\ \frac{x+1}{x-1} \\ \frac{3}{2}, d, 1+a-b-d, 1+a-c-d ;\end{array}\right] d x_{1}$
where $U_{n}(x)$ are the Tchebicheffe Polynomials of Second Kind.

Reference

1. Abdul Halim N, AI-Salam WA. A characterization of Laguerre polynomials, Rend, Sem, Univ., padova. 1964;34:176-179.
2. Burchnall JL, Chaundy TW. Expansions of Appell's double hyper geometric functions (ii), Quart. J. Math. Oxford ser. 1941;1(1):112-128.
3. Exton Harold. Hand book of Hypergeometric Integrals, Ellis Norwood Limited Chichester, U.K; c1978.
4. Shrivastava PN. Classical polynomials- A unified presentation. Pub. Inst. Math. (Beograd)(N.S.) tome. 1978;23(37):169-177.
5. Srivastava HM, Panda R. On the unified presentation of certain classical polynomials. Bull. Un. Mat. Ital. 1975;12(4):306314.
