ISSN: 2456-1452 Maths 2022; 7(6): 110-115 © 2022 Stats & Maths www.mathsjournal.com Received: 14-09-2022 Accepted: 16-10-2022

Amit Kumar Research Scholar, Department of Mathematics J.P. University, Chapra, Bihar, India

Ram Narayan Roy

Retired Associate Professor Department of Mathematics J.P. University, Chapra, Bihar, India

Finite single integral representation for the multivariable generalized polynomial Set $A_n\{(\mathbf{x}_m), y\}$

Amit Kumar and Ram Narayan Roy

Abstract

In the present paper, an attempt has been made to express a Finite Single Integral Representation for the Multivariable Generalized polynomial set $An\{(xm), y\}$. Many interesting new results may be obtained as particular cases on separating the parameters.

AMS Subject Classification: Special function-33 (C)

Keywords: Integral representation, lauricella function hypergeometric function

Introduction

[n(a), 1

We obtained the multivariable generalized polynomial set $An\{(xm), y\}$ by means of generating relation

$$e^{\mu t^{e}} F \begin{bmatrix} \lambda_{y}^{-\mu,e_{1}} t^{e_{1}} \\ \lambda_{y}^{-\mu,e_{1}} t^{e_{1}} \\ (b_{\Box}); \end{bmatrix}$$

$$\times F \begin{bmatrix} (A_{r}); (C_{p}); (\alpha_{u_{m}}) \\ (B_{s}); (D_{q}); (\beta_{v_{m}}) \\ \lambda_{x}^{d} t, \lambda_{2} x_{2}^{\Box_{2}} y^{-\mu_{2}\Box_{2}} \\ \dots \\ \dots \\ \lambda_{m} x_{m}^{\Box_{m}} t^{\Box_{m}} \end{bmatrix}$$

$$= \sum_{n=0}^{\infty} A_{n,e;e_{1};e_{2};\dots,e_{m};(b_{\Box});(B_{s});(D_{q});(\beta_{v_{m}})}^{v;\mu;\alpha;\mu_{1};\mu_{2};\lambda;\lambda_{1};\lambda_{2},\dots,\lambda_{m},d;(a_{g});(A_{r});(C_{p});(\alpha_{u_{m}})} \{(x_{m}),y\}t^{n} \qquad \dots (1.2)$$

where ν , μ , μ_1 , μ_2 , λ , λ_1 , λ_2 ,, λ_m , d are real and e, e_1 are non-negative integer and e_2 e_m are natural number.

The left hand side of (1.2) are contains the product of generalized hypergeometric function and Lauricella function in the notation of Burchnall and Chaundy [2]. The polynomial set contains number of parameters for simplicity we shall denote

 $A_{n,e;e_{1};e_{2};\ldots\ldots,e_{m};(b_{\Box});(B_{S});(D_{q});(\beta_{v_{m}})}^{\nu;\mu;\alpha;\mu_{1};\mu_{2};\lambda;\lambda_{1};\lambda_{2},\ldots,\lambda_{m},d;(a_{g});(A_{r});(C_{p});(\alpha_{u_{m}})}\{(x_{m}),y\} \text{ by } A_{n}\{(x_{m}),y\}.$

where n denotes the order of the polynomial set.

2. Notations

A. (i) $(n) = 1, 2, \dots, n-1, n.$ (ii) $(a_p) = a_1, a_2, a_3, \dots, a_p.$ (iii) $(a_p; i) = a_1, a_2, a_3, \dots, a_{i-1}, a_{i+1}, \dots, a_p.$

B. (i)
$$[(a_p)] = a_1, a_2, a_3, \dots, a_p$$
.
(ii) $[(a_p)]_n = \prod_{i=1}^p (a_i)_n = (a_1)_n (a_2)_n (a_3)_n \dots (a_p)_n$

Corresponding Author: Amit Kumar Research Scholar, Department of Mathematics J.P. University, Chapra, Bihar, India

C. (i)
$$\Delta(a; b) = \frac{b}{a}, \frac{b+1}{a} + \cdots \dots \frac{b+a-1}{a}$$
.
(ii) $\Delta(a(1); b) = \frac{b}{a}, \frac{b+1}{a}, \frac{b+2}{a}, \dots \dots \frac{b+a-2}{a}$
(iii) $\Delta(a; b \pm c \pm d) = \Delta(a; b + c + d), \Delta(a; b + c - d), \Delta(a; b - c - d),$

$$\mathbf{D.} (i) \ \Delta_k[a;b] = \prod_{r=1}^a \left(\frac{b+r-1}{a}\right)_k = \left(\frac{b}{a}\right)_k \left(\frac{b+1}{a}\right)_k \dots \left(\frac{b+a-1}{a}\right)_k.$$

$$(ii) \ \Delta_k[a(1);b] = \left(\frac{b}{a}\right)_k \left(\frac{b+1}{a}\right)_k \dots \left(\frac{b+a-2}{a}\right)_k.$$

$$(iii) \ \Delta_k[m;(a_p)] = \prod_{i=1}^b \prod_{r=1}^m \left(\frac{a_i+r-1}{m}\right)_k.$$

$$\begin{aligned} \mathbf{E.} &(\mathbf{i}) \ \Gamma[(a_p)] = \prod_{i=1}^p (a_i). \\ &(\mathbf{i}) \ \Gamma[(a_p); (s)] = \prod_{i=s+1}^p (a_i). \\ &(\mathbf{i}) \ \Gamma[(a; b)] = \prod_{r=1}^a \Gamma\left(\frac{b+r-1}{a}\right) \\ &(\mathbf{i}v) \ \Gamma[\Delta(m); (a_p)] = \prod_{i=1}^p \prod_{r=1}^m \Gamma\left(\frac{(a_i)+r-1}{m}\right) \end{aligned}$$

F. (i)
$$\Gamma(a \pm b) = \Gamma(a + b)\Gamma(a - b)$$
.
(ii) $\Gamma_{**}(a+b) = \Gamma(a+b)\Gamma(a+b)$

$$M = \frac{[(A_r)]_n [(C_p)]_n (\lambda x_1^d)^n}{[(B_s)]_n [(D_q)]_n n!}$$

For
$$e_2 > 1$$
, $e_3 > 1$ $e_m > 1$

$$A_{n}\{(x_{m}), y\} = \frac{\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a-b-d)\Gamma(1+a-c-d)}{\Gamma(d)\Gamma(1+a-b)\Gamma(1+a-c)\Gamma(1+a-c)\Gamma(1+a-b-c-d)}$$

$$\begin{bmatrix} a, 1 + \frac{a}{2}, b, c; \end{bmatrix}$$

$$\times \int_{0}^{1} x_{1}^{d-1} (1-x_{1})^{a-2d} {}_{4}F_{3} \begin{bmatrix} x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c; \end{bmatrix}$$

$$\times F_{r+p:h:\beta_{u_1},\beta_{u_2},\ldots,\beta_{u_m}}^{1+s+q:g:\alpha_{u_1},\alpha_{u_2},\ldots,\alpha_{u_m}} \begin{bmatrix} (-n):e,e_1,e_2;\ldots,e_m \end{bmatrix}$$

$$[(1 - (B_s) - n): e, e_1, e_2 - 1 \dots e_m - 1], [(1 - (D_q) - n): e, e_1, e_2; \dots \dots e_m][(a_g); 1] \\ [(1 - (A_r) - n): e, h_1, e_2 - 1 \dots e_m - 1], [(1 - (C_p) - n): e, e_1, e_2; \dots \dots e_m][(b_h); 1]$$

$$\begin{bmatrix} [(\alpha_{u_1}):1], [(\alpha_{u_2}):1] \dots \dots [(\alpha_{u_m}):1] [(v_z):1], [(1+a-2d):2] [1+a-b-c-d;1], \\ [(\beta_{v_1}):1], [(\beta_{v_2}):1] \dots \dots [(\beta_{v_m}):1], [(d):1] [(1+a-c-d):1] [(1+a-c-d):1], \end{bmatrix}$$

$$\frac{\mu(-1)^{e(r+s+p+q+g+h+1)}}{(\lambda x_1^d)^e}, \frac{\lambda_1(-1)^{e_1(r+s+p+q+g+h+1)}}{(\lambda x_1^d y^{\mu_1})^{e_1}}, \dots \dots$$

$$\frac{\lambda_2 x_2^{e_2}(-1)^{e_2(r+s+p+q+g+h+1)+r+s}}{(\lambda x_1^d y^{\mu_2})^{e_2}}, \frac{\lambda_m x_m^{e_m}(-1)^{e_m(r+s+p+q+g+h+1)+r+s}}{(\lambda x_1^d)^{e_m}} \right] dx$$
(3.1)

Provided that Re(d), $Re(a-2d) \ge -1$ and $Re(b+c+d-a) \ge -1$.

Proof: we have

$$I_{1} = \int_{0}^{\cdot} x_{1}^{d-1} (1-x_{1})^{a-2d} {}_{4}F_{3} \begin{bmatrix} a, 1+\frac{a}{2}, b, c; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c; \end{bmatrix}$$

$$\begin{split} & \sum_{k=0}^{[n]} \sum_{k_1=0}^{[n]} \sum_{k_1=0}^{[n]} \sum_{k_2=0}^{[n]} \sum_{k_1=0}^{[n]} \sum_{k_2=0}^{[n]} \sum_{k_1=0}^{[n]} \sum_{k_1=0}^$$

https://www.mathsjournal.com

$$\times \frac{...(\lambda_m x_m^{e_m})^{k_m} (-1)^{\{e_m(r+s+p+q+g+h+1)r+s\}k_m(-n)_{ek+e_1k_1+e_2k_2+\cdots}...+e_mk_m}}{...(\lambda_m x_m^{e_m})^{k_m} (-1)^{\{e_m(r+s+p+q+g+h+1)r+s\}k_m(-n)_{ek+e_1k_1+e_2k_2}....+e_mk_m}}$$

 $\frac{(\lambda x_1^d)^{e_m k_m}}{(\lambda x_1^d)^{e_m k_m}}$ The single terminating factor makes all summation in (3.2) runs upto ∞ . Then we finally achieve.

$$=\frac{\Gamma(d)\Gamma(1+a-b)\Gamma(1+a-2d)\Gamma(1+a-b-c-d)\Gamma(1+a-c)A_{n}\{(x_{m}),y\}}{\Gamma(1+a)\Gamma(1-a-b-c)\Gamma(1+a-b-d)\Gamma(1+a-c-d)}$$

Hence the proof. We have from ^[3]

$$\int_{0}^{'} x_{1}^{d-1} (1-x_{1})^{a-2d} {}_{4}F_{3} \begin{bmatrix} a, 1+\frac{a}{2}, b, c; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c; \end{bmatrix}$$

 $=\frac{\Gamma(d)\Gamma(1+a-2d)\Gamma(1+a-b)\Gamma(1+a-c)\Gamma(1+a-b-c-d)}{\Gamma(1+a)\Gamma(1-a-b-c)\Gamma(1+a-b-d)\Gamma(1+a-c-d)}$

Provided that Re(d), Re(a-2d) > -1 and Re(b+c+d-a) > -1.

Particular Cases of (3.1)

(i) If we take
$$r = 0 = s = p = q = \alpha_{u_1} = \beta_{v_1}$$
; $g = p = q$; $\mu = 1 = z = e = e_1 = \lambda_1 = \lambda = d = m_1 = \mu_1 = y$; $x_1 = \frac{1}{r}$, we get

$$1F_1(-n;b;x) = \frac{\Gamma(1+a)\,\Gamma(1+a-b-c)\Gamma(1+a-b-d)\Gamma(1+a-c-d)}{\Gamma(d)\Gamma(1+a-b)\Gamma(1+a-c)\Gamma(1+a-2d)\Gamma(1+a-b-c-d)}$$

$$\times \int_{0}^{r} x_{1}^{d-1} (1-x_{1})^{a-2d} {}_{4}F_{3} \begin{bmatrix} a, 1+\frac{a}{2}, b, c; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c; \end{bmatrix}$$

$$\times F \begin{bmatrix} -n, \Delta(2; 1+a-2d), (1+a-c-d)(a_{p}); \\ x_{1} \\ d, 1+a-b-d, 1+a-c-d, (b_{q}); \end{bmatrix} dx_{1}$$

where $1F_1[-n, b; x]$ are the Abdul-Halim and Al-Salam Polynomials [03].

(ii) On putting
$$r = 0 = s = p = q = u_{\alpha_1} = v_{\beta_1}$$
; $g = h$; $z = 1 = \mu_1 = d = y = \lambda = \mu = e = e_1 = a_1 = b_1$; $x_1 = y$; $\mu_1 = 1 + \lambda_2$, we get

$$A_n^{\lambda_2}(y) = \frac{\Gamma(1+a)\,\Gamma(1+a-b-c)\Gamma(1+a-b-d)\Gamma(1+a-c-d)y^n}{\Gamma(d)\Gamma(1+a-b)\Gamma(1+a-c)\Gamma(1+a-2d)\Gamma(1+a-c-d)n!}$$

$$\times \int_{0}^{r} x_{1}^{d-1} (1-x_{1})^{a-2d} {}_{4}F_{3} \begin{bmatrix} a, 1+\frac{a}{2}, b, c; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c; \end{bmatrix}$$

$$\times F \begin{bmatrix} -n, \Delta(2; 1+a-2d), (1+a-c-d)1 + \lambda_2; \\ \frac{1}{y} \\ d, 1+a-b-d, 1+a-c-d; \end{bmatrix} dx_1$$

where $A_n^{\lambda_2}(y)$ are the Srivastava Polynomials ^[4].

(iii) For
$$r = 0 = s = p = g = h = \alpha_{u_1} = \beta_{v_1}$$
; $p = 1 = e = e_1 = d = x_2 = x_m = y = \mu = z = v$; $x_1 = \frac{1}{y}$; $c_1 = 1 + \lambda, \lambda = -1$, we get
$$A_n^{\lambda}(y) = \frac{\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a-b-d)\Gamma(1+a-c-d)(1+\lambda)_n(-1)^n y^n}{n!\Gamma(d)\Gamma(1-a+b)\Gamma(1+a-b-c)\Gamma(1+a-b-c-d)}$$

$$\times \int_{0}^{'} x_{1}^{d-1} (1-x_{1})^{a-2d} {}_{4}F_{3} \begin{bmatrix} a, 1+\frac{a}{2}, b, c; \\ x_{1} \\ \frac{a}{2}, 1+a-b, 1+a-c; \end{bmatrix}$$

$$\times F \begin{bmatrix} -n, \Delta(2; 1+a-2d), 1+a-b-c-d; \\ -y \\ -\lambda - n, d, 1+a-b-d, 1+a-c-d; \end{bmatrix} dx_1$$

Where $L_n^{(\alpha)}(y)$ are the Srivastava Polynomials ^[5].

(iv) On making the substitution $r = 0 = p = q = s = g = \alpha_{u_1} = \beta_{v_1}$; $h = 1 = e = e_1 = d = v = x = \lambda = \mu_1$; $b_1 = 1 + \alpha$, and $x_1 = \frac{1}{y}$, we get

$$\begin{split} L_n^{(\alpha)}(y) &= \frac{\Gamma(1+\alpha)_n \Gamma(1+a) \Gamma(1+a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d)}{n! y^n \Gamma(d) \Gamma(1-a-b) \Gamma(1+a-b-c) \Gamma(1+a-2d) \Gamma(1+a-b-c-d)} \\ &\times \int_0^{\prime} x_1^{d-1} (1-x_1)^{a-2d} \, _4F_3 \begin{bmatrix} a, 1+\frac{a}{2}, b, c; \\ x_1 \\ \frac{a}{2}, 1+a-b, 1+a-c; \end{bmatrix} \\ &\times F \begin{bmatrix} -n, \Delta(2; 1+a-2d), 1+a-b-c-d; \\ y \\ 1+\alpha, d, 1+a-b-d, 1+a-c-d; \end{bmatrix} dx_1 \end{split}$$

where $L_n^{(\alpha)}(y)$ are the Laguerre Polynomials.

(v) For
$$r = 0 = s = p = s = a_{u_1} = \beta_{v_1}$$
; $q = h = e = e_1 = d = v_z = \mu_1$; $\lambda = \frac{1}{2} = \lambda_1, D_1 = \frac{1}{2} = b_1$; and $x_1 = \frac{x-1}{x+1}$, we get
 $T_n(x_1) = \frac{\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a-b-d)\Gamma(1+a-b-c-d)\left(\frac{x-1}{2}\right)^n}{\Gamma(d)\Gamma(1-a-b)\Gamma(1+a-b-c)\Gamma(1+a-b-c-d)}$
 $\times \int_0^r x_1^{d-1} (1-x_1)^{a-2d} {}_4F_3 \begin{bmatrix} a, 1+\frac{a}{2}, b, c; \\ x_1 \\ \frac{a}{2}, 1+a-b, 1+a-c; \end{bmatrix}$
 $\times F \begin{bmatrix} -n, -\frac{1}{2} - n, \Delta(2; 1+a-2d), 1+a-b-c-d; \\ x_1 \\ \frac{1}{2}, d, 1+a-b-d, 1+a-c-d; \end{bmatrix} dx_1$

Where, $T_n(x)$ are the Tchebicheffe Polynomials.

(vi) For the value of $r = 0 = s = p = g = \alpha_{u_1} = \beta_{v_1}$; $q = 1 = h = e = e_1 = d = v_2 = \mu_1$; $\lambda = \frac{1}{2} = \lambda_1$, $D_1 = \frac{3}{2} = b_1$; and $\frac{x-1}{x+1}$ for x_1 , we get

$$\begin{split} U_n(x) &= \frac{\Gamma(1+a) \Gamma(1+a-b-c)\Gamma(1+a-b-d)\Gamma(1+a-c-d) \left(\frac{x-1}{2}\right)^n}{\Gamma(d)\Gamma(1+a-b)\Gamma(1+a-c)\Gamma(1+a-c)\Gamma(1+a-c-d)(1+a-b-c)(-d)} \\ &\times \frac{(x-1)!}{n!} \int_0^c x_1^{d-1} (1-x_1)^{a-2d} \,_4F_3 \begin{bmatrix} a, 1+\frac{a}{2}, b, c; \\ \frac{x+1}{x-1} \\ \frac{a}{2}, 1+a-b, 1+a-c; \end{bmatrix} \\ &\times F \begin{bmatrix} -n, -\frac{1}{2} - n, \Delta(2; 1+a-2d), 1+a-b-c-d; \\ \frac{x+1}{x-1} \\ \frac{3}{2}, d, 1+a-b-d, 1+a-c-d; \end{bmatrix} dx_1 \end{split}$$

where $U_n(x)$ are the Tchebicheffe Polynomials of Second Kind.

Reference

- 1. Abdul Halim N, AI-Salam WA. A characterization of Laguerre polynomials, Rend, Sem, Univ., padova. 1964;34:176 -179.
- 2. Burchnall JL, Chaundy TW. Expansions of Appell's double hyper geometric functions (ii), Quart. J. Math. Oxford ser. 1941;1(1):112-128.
- 3. Exton Harold. Hand book of Hypergeometric Integrals, Ellis Norwood Limited Chichester, U.K; c1978.
- 4. Shrivastava PN. Classical polynomials- A unified presentation. Pub. Inst. Math. (Beograd)(N.S.) tome. 1978;23(37):169-177.
- 5. Srivastava HM, Panda R. On the unified presentation of certain classical polynomials. Bull. Un. Mat. Ital. 1975;12(4):306-314.