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Finite single integral representation for the 

multivariable generalized polynomial Set An{(xm), y} 

 
Amit Kumar and Ram Narayan Roy 

 
Abstract 

In the present paper, an attempt has been made to express a Finite Single Integral Representation for the 

Multivariable Generalized polynomial set An{(xm), y}. Many interesting new results may be obtained as 

particular cases on separating the parameters. 
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Introduction 

We obtained the multivariable generalized polynomial set An{(xm), y} by means of generating 

relation 
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where, ,1,2,, 1, 2, ……m, d are real and e, e1 are non-negative integer and e2 …. 

em are natural number. 

The left hand side of (1.2) are contains the product of generalized hypergeometric function and 

Lauricella function in the notation of Burchnall and Chaundy [2]. The polynomial set contains 

number of parameters for simplicity we shall denote 
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where n denotes the order of the polynomial set.  

 

2. Notations 

A. (i) (n) = 1, 2, …… n – 1, n. 

(ii) (ap) = a1, a2, a3, …… ap. 

(iii) (ap; i ) = a1, a2, a3, …… ai – 1, ai + 1 …… ap. 

 

B. (i) [(ap)] = a1, a2, a3 …… ap. 
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(iii) (a; b ± c ± d)= (a; b + c + d),(a; b + c – d), 

(a; b – c + d), (a; b – c – d),  

 

D. (i)   ,   -  ∏ .
     

 
/
 

 
    .

 

 
/
 
.
   

 
/
 
 .

     

 
/
 
  

(ii)   , ( )  -  .
 

 
/
 
.
   

 
/
 
 .

     

 
/
 
  

(iii)   [  (  )]  ∏ ∏ .
      

 
/
 

 
   

 
     

 

E. (i)  [(  )]  ∏ (  )
 
     

(ii)  [(  ) ( )]  ∏ (  )
 
       

(iii)  ,(   )-  ∏  .
     

 
/ 

    

(iv)  [ ( ) (  )]  ∏ ∏  .
(  )    

 
/ 

   
 
    

 

F. (i)  (   )   (   ) (   )  

(ii)           
**

a b a b a b  

 

  
,(  )- [(  )] 

(   
 )
 

,(  )- [(  )] 
  

  

 
3. Theore 

For e2 > 1, e3 > 1 …… em > 1 
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Provided that Re(d ), Re (a – 2d) > –1 and Re (b + c + d –a) > –1. 

 

Proof: we have 

 

   ∫   
    

 
(    )

        [

    
 

 
     

   
 

 
             

]  

 



 

~112~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

 ∑ ∑ ∑   ∑
0
                    

  
1

    

0
         

  
1

    

0
    

  
1

    

0
 

 
1

     

 

 
,(  )-          (    )      (    )  [(  )]                      
,(  )-          (    )      (    )  [(  )]                      

  

 

 
[(  )]  

(  )   
    

  (    
  )

  
 (    

  )
  

(   
 )
                      

,(  )-              
                  (                    )  

  

 

 
(      )   (         )  

( )  (       )  (       )  
  

 

 
[(   )]  

[(   )]  
  [(   )]  

   

[(   )]  
[(   )]  

  [(   )]  

  

 

 ∫   
       

 
(    )

            [

    
 

 
      

   
 

 
             

]  

 

 ∑ ∑ ∑   ∑
0
                    

  
1

    

0
         

  
1

    

0
    

  
1

    

0
 

 
1

   
  

 

 
,(  )-          (    )      (    )  [(  )]                      

[(  )]  
(  )   

    
  

,(  )-          (    )      (    )  [(  )]                      
,(  )-             

  

 

 
(    

  )
  
 (    

  )
  

(   
 )
                      

                   (                    ) 
  

 

 
[(   )]  

[(   )]  
  [(   )]  

(      )   (         )     

[(   )]  
[(   )]  

  [(   )]  
( )  (       )  (       )  

  

 

 ∑ ∑ ∑   ∑
,(  )-          (    )      (    )  
,(  )-          (    )      (    )  

0
                    

  
1

    

0
         

  
1

    

0
    

  
1

    

0
 

 
1

     

 

 
[(  )]                  (    )  

[(  )]  
(  )  [(   )]  

[(  )]                  (    )  
,(  )-   [(   )]  

 
  

 

 
[(   )]  

  [(   )]  
     

  (    
  )

  
 (    

  )
  

(   
 )
                      

[(   )]  
  [(   )]  

           
                 (                    ) 

  

 

 
(      )   (         )   (    ) (     ) (     )

( )  (       )  (       )   (   ) (       )
  

 

 
 (          ) (            ) (            )

 (          ) (          )
  

 

 
 ( ) (     ) (     ) (      ) (         )

 (   ) (       ) (       ) (       )
  

 

  ∑ 
          

,  (  )  -        (    )      (    )  
,  (  )  -        (    )      (    )  

  

 

 
[  (  )  ]                    

[(  )]  
(  )  

[  (  )  ]                    
,(  )-   

  

 

 
[(   )]  

[(   )]  
  [(   )]  

  (  ) (             ) 

[(   )]  
[(   )]  

  [(   )]  
(   

 )
  
  

  

 

 
  (  )  (  )

  (             )  (    
  )

  
(  )  *(             )   +  

(   
 )
    

       (   
    )

    
  



 

~113~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

 
 (    

  )
  

(  )*  (             )   +  (  )                    

(   
 )
    

  (3.2) 

The single terminating factor makes all summation in (3.2) runs upto .  

Then we finally achieve. 
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Hence the proof. 

We have from 
[3]
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Provided that Re(d ), Re(a – 2d) > –1 and Re (b + c + d – a) > –1.  

 

Particular Cases of (3.1) 

(i) If we take r = 0 = s = p = q =          g = p = q;  = 1 = z = e = e1 = 1 = = d = m1 = 1 = y;    
 

 
  we get 
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where    ,      - are the Abdul-Halim and Al-Salam Polynomials [03]. 

 

(ii) On putting r = 0 = s = p = q =          g = h; z = 1 = 1 = d = y =  =  = e = e1 = a1 = b1; x1 = y; 1 = 1 + 2 , we get 
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where   
  ( ) are the Srivastava Polynomials 

[4]
. 

 

(iii) For r = 0 = s = p = g = h =          p = 1 = e = e1 = d = x2 = xm = y = = z = ;    
 

 
  c1 = 1+ , = –1, we get 
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Where   
( )( ) are the Srivastava Polynomials 

[5]
. 

 

(iv) On making the substitution r = 0 = p = q = s = g =          h = 1 = e = e1 = d = = x = = 1; b1 = 1 + , and    
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where   
( )( ) are the Laguerre Polynomials. 

 

(v) For r = 0 = s = p = s =          q = h = e = e1 = d = z = 1;   
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Where, Tn(x) are the Tchebicheffe Polynomials. 

 

(vi) For the value of r = 0 = s = p = g =          q = 1 = h = e = e1 = d = z = 1;   
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where Un(x) are the Tchebicheffe Polynomials of Second Kind. 
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