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Investigating heteroscedastic disturbances in some 

transformed economic models while eliminating 

multicollinearity 

 
Biu O Emmanuel and Nwakuya T Maureen 

 
Abstract 

When economic variables move together over time, it may cause increase/decrease in economic 

development. Trend factors in time series are the strongest sources of multicollinearity. The recent 

recession in Nigeria suggest multicollinearity among some Nigeria economic variables. This research 

examined the presence of multicollinearity among some economic variables using Revised Frisch’s 

Confluence (or Bunch –map) Test and Variance Inflation Factor in some transformed models namely; 

Semi-logarithmic (model B), Inverse Semi-logarithmic (model C), Double logarithmic (model D) and 

basic linear model (model A). These models were compared to identify the best fitted using AIC as a 

comparison criterion. Furthermore re-parameterization of the models was done to eliminate multi-

collinear variables and also show the coefficients effect of each model. In addition, the presence 

heteroscedastic disturbance was seen to be present in model A and model B using Golfeld-Quandt test. A 

parsimonious model Yi =f(X3, X4) of the inverse semi logarithm model C was found to be the best fitted 

model. We also observed that heteroscedastic models (model A and B) had very high AIC’s in 

comparison to the homoscedastic models (model C and D). 

 

Keywords: multicollinearity, variance inflation factor, heteroscedastic disturbance, Golfeld-Quandt test 

and Akaike information criterion 

 

1. Introduction 

Ordinary least square regression is arguably the most widely used method for fitting economic 

models. Two of the basic assumptions of linear statistical model are that the explanatory 

variables are not perfectly linearly correlated and that the variance of each disturbance term i  

conditional on the chosen values of the explanatory variables is a constant. When these 

explanatory variables are correlated it is termed multicollinearity. It is typical (or habitual) to 

check for the presence of multicollinearity among the explanatory variables and 

heteroscedasticity of the residuals once the economic model is built. Multicollinearity and 

heteroscedasticity have potentially been a serious problem in the theory of econometrics. Most 

economic models are prone to facing these problems. In this research work we faced the 

problem of separating the effect of some Nigeria economic variables on an outcome variable 

(GDP), due to the presence of multicollinearity. This, we tried to overcome using four 

different models. The research applied two multicollinearity tests to confirm if there is 

existence of multicollinearity among the economic variables and also check for 

heteroscedasticity in the four models considered using Gold-Quandt test.  

 

2. Heteroscedasticity 

Heteroscedastic disturbance arises when the variance of error of the fitted model varies as 

opposed to linear regression assumption, where 

 
2 2( ) ( )Var E  = =   (1) 

 

But in heteroscedastic situation  
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2 2( ) ( )i i iVar E  = =                      (2) 

 

One of the ills of this situation is that it makes the determination of the variance of the coefficients become inapplicable given 

that, 

 

( )

2

2
( )

i

i

i

x
Var b

x x


=

−




 (3) 

 

but if 
2 varies, (that is 𝜎𝑖

2), it implies that 𝜎𝑖
2 cannot be taken out of the summation because it will not be a finite constant but 

would rather tend to change with an increasing range of x values and hence rendering equation (1.3) inapplicable. The inference 

drawn despite presence of heteroscedastic may be misleading and disturbs the optimal properties of ordinary least squares (OLS) 

estimators. In this work, we tested for the presence heteroscedastic disturbance on different models using the Golfeld-Quandt test. 

 

3. Multicollinearity 

Another crucial condition for the application of least squares is that the explanatory variables are not perfectly linearly correlated 

that is 𝑟𝑥𝑖𝑥𝑗
≠ 1, when this assumption is violated it is termed multicollinearity that is the existence of a weakly perfect or not 

exact linearly correlated relationship among some or all the explanatory variables of a regression model. When this happen the 

usual least-squares analysis of the linear regression model can be made dramatically inadequate. In most cases, despite the 

significant of the regression, the individual coefficients are not significant which means neither contribute significantly to the 

model after the other one is included. But individually they contribute an awful lot. If both variables are removed from the model, 

the fit would be inadequate (or worse). Hence, multicollinearity is a situation of not being able to separate the effects of two or 

more variables on an outcome variable. If two or more variables are significantly alike, it becomes impossible to identify which of 

the variables accounts for variance in the response variable Ginker and Lieberman, (2017) [1].  

The nature of the problem may also be illustrated geometrically as shown,  

 

+=YY ˆ  (4) 

 

Where, is the observation on the response, Y is the fitted response and ie represents the experimental  

error. For instance given that 32 , xx vectors are not perfectly collinear and they span a two-dimensional  

subspace in
n dropping a perpendicular from y to that subspace slits y into  

 

3322
ˆˆˆ xxXY  +==   (5) 

 

The regression vectorY is a unique linear combination of the column vectors 32 , xx . If it only span a one-dimensional subspace 

(line) in 
n the Y  vector is still unambiguously determined by dropping a perpendicular from y to the line, but ŷ  cannot be 

expressed uniquely in terms of X2 and X3. Several techniques are frequently employed in diagnosing multicollinearity. In 

econometrics there are several measures of multicollinearity diagnostics that are commonly employed. 

 

4. Methodology 

The data set used in this work is an economic data collected from the Central Bank of Nigeria (CBN) Bulletin with Gross 

domestic product (GDP) as the dependent variable while the Administrative sector, Social sector, Economic sector and 

Transportation sector as the explanatory variables. We adopted four models to determine the model that best fits the data while 

eliminating collinear variables and heteroscedastic disturbances. Goldfeld-Quandt test was used to check for heteroscedasticity 

while multicollinearity was disgonised using Revised Frisch’s Confluence (or Bunch –map) Test and Variance Inflation factors 

(VIF). The models were compared using Akaike Information Criterion (AIC).  

 

4.1 Model Specification  

The economic models considered are expressed are follows 

Model A (Linear model): 𝐺𝐷𝑃𝑖 = 𝛽0 + 𝛽1𝐴𝑑𝑚𝑖𝑛. +𝛽2𝑆𝑜𝑐𝑖𝑜 + 𝛽3𝐸𝑐𝑜𝑛. +𝛽4𝑇𝑟𝑎𝑛𝑠. +𝑒𝑖 (6) 

Model B (Semi log):𝐺𝐷𝑃 = 𝛽0 + 𝛽1 ln(𝐴𝑑𝑚𝑖𝑛) + 𝛽2𝑙𝑛(𝑆𝑜𝑐𝑖𝑜) + 𝛽3 ln(𝐸𝑐𝑜𝑛. ) + 𝛽4ln (𝑇𝑟𝑎𝑛𝑠. ) + 𝑒𝑖 (7) 

Model C (Inverse semi-log). 𝐿𝑛(𝐺𝐷𝑃) = 𝛽0 + 𝛽1𝐴𝑑𝑚𝑖𝑛. +𝛽2𝑆𝑜𝑐𝑖𝑜 + 𝛽3𝐸𝑐𝑜𝑛. +𝛽1𝑇𝑟𝑎𝑛𝑠. +𝑒𝑖  (8) 

ModelD(Double-log):ln (𝐺𝐷𝑃) = 𝛽0 + 𝛽1 ln(𝐴𝑑𝑚𝑖𝑛) + 𝛽2𝑙𝑛(𝑆𝑜𝑐𝑖𝑜) + 𝛽3 ln(𝐸𝑐𝑜𝑛. ) + 𝛽4ln (𝑇𝑟𝑎𝑛𝑠. ) + 𝑒𝑖  (9) 
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4.2 Diagnostics Measures of Heteroscedasticity 

4.2.1 Goldfeld-Quandt Test 

To use this method we assumed that the heteroscedastic variance
2

i is positively related to one of the explanatory variables in the 

regression model. Consider the regression model with two variables: 

 

iii XY  ++= 21   (10) 

 

Since the heteroscedastic variance
2

i is positively related to iX we have; 

 
222

ii X =  (11)  

 

where  
2 is a constant. The assumption postulates that the 

2

i is proportional to the square of the X variables this means that 

the larger the size of the X variables, the larger the 
2
i . To efficiently test this, the following steps of the Goldfeld-Quandt was 

implemented, Gujarati and Porter (2009) [2].  

Given that the Null hypothesis is Homoscedasticity. 

Step 1: Order or rank the observations according to the values of iX in order of increasing magnitude. 

Step 2: where 𝑘 is specified based on hypothesis rather than experiment, Omit 𝑐 central observations and divide the remaining 

(𝑛 − 𝑐) observations into two groups each of 
𝑛−𝑐

2
 observations. 

Step 3: Fit the OLS regressions to the first 
𝑛−𝑐

2
 observations and the last 

𝑛−𝑘

2
 observations and obtain the respective residual sums 

of squares 1RSS and 2RSS , where 1RSS representing the RSS from the regression corresponding to the smaller iX values(the 

smaller variance group) and 2RSS representing that from the larger iX values(the large variance group). These 

 
𝑛−𝑐

2
− 𝑘 𝑜𝑟 (

𝑛−𝑐−2𝑘

2
) 𝑑𝑓  (12) 

 

where  k is the number of parameter to be estimated and this includes the intercept. 

Step 4: Compute the ratio 

 

df
RSS

df
RSS

1

2

=
  (13) 

 

4.3 Diagnostics Measures of Multicollinearity 

4.3.1 Revised Frisch’s Confluence (Bunch-Map) Test 

The seriousness of the effect of multicollinearity seems to depend on the degree of inter-correlation of the independent variables 

as well as the correlation coefficient in the model. We might therefore suggest that the standard errors, partial correlation 

coefficients and coefficient of determination
2R , may be used for detecting multicollinearity. However, a combination of all these 

criteria may help in the detection of multicollinearity. These procedures are as follows: 

▪ We regress the dependent variable on each one of the independent variables separately (i.e all the elementary regression) 

▪ We choose the elementary regression which appears to give the most plausible result. 

▪ We sequentially insert additional variables and examine their effect on the individual coefficients, the associated standard 

errors and the overall coefficient of multiple determination
2R . 

▪ A new variable is classified as useful and retained in the model if it improves 
2R  without rendering the individual 

coefficients unacceptable on a prior consideration. It is classified as superfluous and not included in the model if it does not 

improve 
2R  and does not affect to any considerable extent the values of the individual coefficients; otherwise it is classified 

as detrimental if it affects considerably the sign of value of the coefficients. 

 

4.3.2 Variance Inflation Factor (VIF) 

Wonsuk et al. (2014) [5] defined variance inflation factor (VIF) as a measure of how much the variance of the estimated regression 

coefficient bi is "inflated" by the existence of correlation among the predictor variables in the model. According to the author, a 

VIF of 1 means that there is no correlation among the ith predictor and the remaining predictor variables, and hence the variance of 

bi is not inflated at all. The general rule of thumb is that VIFs exceeding 10 are signs of serious multicollinearity requiring 
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correction. The test of multicollinearity is necessary to ascertain the independence of regression variables. The variance inflation 

factor for the ith suspected mediator variable is given by: 

 

𝑉𝐼𝐹𝑖 =
1

1−𝑅𝑖𝑗
2    (14) 

 

where  𝑅2 is the coefficient of determination.  

 

2 2exp var
0 1

var

lained iation SSR
R R

total iation SST
= =      (15) 

where Total sum of squares (Total Variation): 
2

1

( )
n

i

i

SST Y Y
=

= −    (3.32) 

Regression sum of squares (Explained Variation): 
^

2

1

( )
n

i

i

SSR Y Y
=

= −  (16) 

4.4 Criteria for Model Selection 

The Model selection criteria considered in this research is Akaike Information Criterions (AIC)  

The general equation for calculating AIC given by Henry (2010) is AIC=-2* nl  (Likelihood) +2*p (17) 

where  nl  is the natural logarithm, (Likelihood) is the value of the likelihood, p is the number of parameter in the model. 

AIC can also be calculated using residual sum of squares from regression: AIC= n* nl  (RSS/n) +2*k (18) 

where  n is the number of data points, RSS is the residual sum of squares and k is the number of parameters 

 

5. Results 

 

Table 1: Heteroscedastic disturbance test for Model (A to D) 
 

Model Golfeld-Quandt test Critical :F (n-c-2k)/2=F(8,8,0.05) =3.44 

Model A: 625.780944 Heteroscedasticity 

Model B: 664.402925 Heteroscedasticity 

Model C: 0.58964135 Homoscedasticity 

Model D: 5.8809E-05 Homoscedasticity 
Table 1.0 show that only model A and model B were heteroscedastic. 

 

5.1 Multicollinearity test using Revised Frisch’s Confluence (or Bunch –map) Test and Variance Inflation factors 

 

Table 2: Parameter Estimates of the Regression of GDP on Actual Economic variables Using Model A 
 

Model 
Parameter Estimates with p-values in parenthesis 

R2(%) 
Durbin-Watson 

Statistic 
VIF 

0  1  2  3  4  
Yi =f(X1) -2795(0.52) 25.713(0.000*)    65.3 0.5739 - 

Yi=f(X2) 3385(0.4300) 24.597 (0.000*)    57.2 0.7709 - 

Yi =f(X3) 6470(0.201) 9.362(0.001*)    39.6 0.2966 - 

Yi =f(X4) -100 (0.965) 9.1681(0.000*)    87.6 1.3757 - 

Yi =f (X1, X2) -2552(0..590) 24.08(0.032*) 1.81(0.860)   65.5 0.5895 
7.0 

7.0 

Yi =f (X1, X3) -3504(0.436) 31.561(0.000*) -3.217(0.367)   66.6 0.6044 
3.6 

3.6 

Yi =f (X1, X4) -1489(0.573) 4.358(0.292) 8.074(0.000*)   88.1 1.1515 
3.0 

3.0 

Yi =f (X2, X3) 3711(0.382) 37.81(0.003*) -6,572(0.214)   60.1 1.0536 
6.5 

6.5 

Yi=f (X2, X4) -847(0.717) 4.597(0.204) 8.143(0.000*)   88.4 1.3282 
2.2 

2.2 

Yi =f (X3, X4) -1386(0.546) 2.359(0.073) 8.3069(0.00*)   89.2 1.3856 
1.4 

1.4 

Yi =f (X1, X2, X3) -2213(0.633) 24.02(0.030*) 14.99(0.302) -6.526(0.18)  68.3 0.7972 

7.0 

12.6 

6.5 

Yi =f (X1, X2, X4) -874(0756) 0.135(0.985) 4.499(0.490) 8.13(0.00*)  88.4 1.322 

9.4 

7.0 

3.0 

Yi =f (X1, X3 ,X4) -497(0.849) -5.178(0.463) 3.757(0.111) 9.097(0.00*)  89.5 1.7162 
9.5 

4.6 
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3.8 

Yi =f (X2, X3, X4) -1538(0.508) -7.137(0.398) 4.767(0.135) 9.019(0.00*)  89.6 1.5305 

13.0 

8.5 

2.9 

Yi =f( X1, X2, X3,X4) -878(0.746) -3.671(0.625) -5.751(0.524) 5.291(0.124) 9.441(0.0*) 89.7 1.753 

10.5 

14.5 

9.5 

4.3 

Footnote: p-values in parenthesis where *significant at 5%.  

In Table 2.0, three models have high VIF value (> 10) in one or two independent variables. However, the model with the smallest VIF is Yi 

=f(X3, X4) after dropping the two collinear variables (X1 and X2) with only one significant coefficient and R2 of 89.2%.  

 

Table 3: Parameter Estimates of the Regression of GDP on SEMI-LOG Economic variables using Model B 
 

Model Parameter Estimates with p-values in parenthesis 
R2 

(%) 

Durbin-

Watson 

Statistic 

VIF 

 0  1  2  3  4  
 

Yi =f(X1) -5234(0.002*) 11837(0.000*)    52 0.1876 - 

Yi=f(X2) -28411(0.004*) 9211 (0.000*)    57.5 0.2933 - 

Yi =f(X3) -45697(0.002*) 10567(0.000*)    51.8 0.21528 - 

Yi =f(X4) -15531 (0.068) 5855(0.000*)    48.5 0.2254 - 

Yi =f (X1, X2) -37710(0.028*) 3560(0.487) 6854(0.080*)   58.4 0.2406 
5.0 

5.0 

Yi =f (X1, X3) -53935(0.001*) 6424(0.187) 5571(0.200)   55.6 0.2103 
4.1 

4.1 

Yi =f (X1, X4) -43569(0.055) 8649(0.175) 1774(0.580)   52.7 0.1644 
6.6 

6.6 

Yi =f (X2, X3) -31369(0.054) 8155(0.098) 1366(0.813)   57.6 0.26115 
7.8 

7.8 

Yi=f (X2, X4) -27713(0.006*) 7277(0.032*) 1574(0.481)   58.5 0.2630 
3.6 

3.6 

Yi =f (X3, X4) -39880(0.006*) 6444(0.036*) 3070(0.085)   58.0 0.1968 
2.2 

2.2 

Yi =f (X1, X2, 

X3) 

-

38609(0.056**) 
3457(0.0.520) 6505(0.242) 540(0.928)  58.4 0.2354 

5.2 

10.0 

8.2 

Yi =f (X1, X2, 

X4) 
-33334(0.135) 2048(0.774) 6668(0.098) 966(0.756)  58.6 0.2403 

9.3 

5.1 

6.7 

Yi =f (X1, X3 

,X4) 
-36259(0.102) -1943(0.827) 7375(0.115) 3681(0.271)  58.1 0.2088 

14.3 

4.7 

7.5 

Yi =f (X2, X3, 

X4) 
-34082(0.043*) 4468(0.500) 3021(0.624) 1960(0.416)  58.9 0.2169 

14.7 

8.8 

4.0 

Yi =f (X1, X2, 

X3, X4) 
-33658(0.140) -267(0.977) 4411(0.533) 3167(0.698) 2058(0.628) 58.9 0.2178 

15.6 

15.9 

14.6 

12.0 

Footnote: p-values in parenthesis where *significant at 5%.  

In Table 3.0, four models have high VIF value (> 10) in one or two independent variables. Model Yi =f(X3, X4) also has the 

smallest VIF after dropping two variables (X1 and X2) as the collinear variables with R2 of 58.0% which is low with only one 

significant coefficient. 

 

Table 4: Parameter Estimates of the Regression of GDP on LOG-SEMI Economic variables Model C 

 

Model 

Parameter Estimates with p-values in parenthesis 
R2 

(%) 

Durbin-Watson 

Statistic 
VIF 

0  1  2  3  4  
Yi =f (X1) 6.7110(0.000*) 0.00225(0.000*)    84.2 1.2461 - 

Yi=f (X2) 7.3286(0.000*) 0.00203(0.000*)    65.4 1.0637 - 

Yi =f (X3) 7.4914(0.000*) 0.00084(0.000*)    53.98 0.4262 - 

Yi =f (X4) 7.2484(0.000*) 0.00065(0.000*)    74.9 0.5807 - 

Yi =f (X1, X2) 6.6152(0.000*) 0.00289(0.000*) -0.00071(0.201)   85.4 1.1755 
7.0 

7.0 

Yi =f (X1, X3) 6.6679(0.000*) 0.00261(0.000*) -0.00019(0.290)   85.0 1.2956 3.6 

http://www.mathsjournal.com/


 

~6~ 

International Journal of Statistics and Applied Mathematics http://www.mathsjournal.com 
 

3.6 

Yi =f (X1, X4) 6.7537(0.000*) 0.00155(0.000*) 0.000264(0.011*)   88.4 0.8841 
3.0 

3.0 

Yi =f (X2, X3) 7.3324(0.000*) 0.00218(0.013*) -0.00008(0.840)   65.4 1.1046 
6.5 

6.5 

Yi=f (X2, X4) 7.0969(0.000*) 0.000933(0.013*) 0.000446(0.000*)   81.1 0.8543 
2.2 

2.2 

Yi =f (X3, X4) 7.0187(0.000*) 0.00042(0.0002*) 0.0005(0.000*)   84.2 0.8032 
1.4 

1.4 

Yi =f (X1, X2, X3) 6.6188(0.000*) 0.00289(0.000*) -0.00057(0.450) -0.000(0.78)  85.5 1.2049 

7.0 

12.6 

6.5 

Yi =f (X1, X2, X4) 6.6680(0.000*) 0.00214(0.001*) -0.00063(0.201) 0.000(0.012*)  89.2 0.7523 

9.4 

7.0 

3.0 

Yi =f (X1, X3 ,X4) 6.7559(0.000*) 0.00153(0.013*) 0.000086(0.963) 0.000(0.024*)  88.3 0.8833 

9.5 

4.6 

3.8 

Yi =f (X2, X3, X4) 7.0054(0.000*) -0.000631(0.431) 0.000631(0.039*) 0.000(0.00*)  84.7 0.7736 

13.0 

8.5 

2.9 

Yi =f (X1, X2, X3, 

X4) 
6.6677(0.000*) 0.00188(0.003*) -0.0013(0.059*) 0.0004(0.156) 0.00(0.0*) 90.3 0.6367 

10.5 

14.5 

9.5 

4.3 

Footnote: p-values in parenthesis where *significant at 5%. 

In Table 4.0, three models have high VIF value (> 10) in one or two independent variables. However, the best fit model is Yi =f(X3, X4) after 

dropping two variables (X1 and X2) as collinear variables with R2 of 84.2% with the both variables significant at 5%.  

 

Table 5: Parameter Estimates of the Regression of GDP on LOG-LOG Economic variables Model D 
 

Model 

Parameter Estimates with p-values in parenthesis 
R2 

(%) 

Durbin-Watson 

Statistic 

VIF 

0  1  2  3  4  
 

Yi =f (X1) 1.339(0.010*) 
1.209(0.00*) 

 
   91.4 0.6318 - 

Yi=f (X2) 4.337(0.000*) 
0.832(0.00*) 

 
   79.0 0.5379 - 

Yi =f (X3) 2.679(0.002*) 0.966(0.00*)    73.1 0.2768 - 

Yi =f (X4) 5.151(0.000*) 0.589(0.00*)    82.7 0.6721 - 

Yi =f (X1, X2) 1.675(0.005*) 1.087(0.00*) 0.158(0.224)   92.1 0.5916 
5.0 

5.0 

Yi =f (X1, X3) 1.308(0.013*) 1.105(0.00*) 0.107(0.456)   91.7 0.6463 
4.1 

4.1 

Yi =f (X1, X4) 1.939(0.010*) 0.991 (0.000*) 0.121 (0.240)   92.0 0.4978 
6.6 

6.6 

Yi =f (X2, X3) 3.871(0.000*) 0.666(0.015*) 0.215 (0.489)   79.5 0.4260 
7.8 

7.8 

Yi=f (X2, X4) 4.497(0.000) 0.392 (0.008) 0.359 (0.001)   87.5 0.6995 
3.6 

3.6 

Yi =f (X3, X4) 3.464(0.000*) 0.460(0.00*) 0.396 0.000*)   90.3 0.6129 
2.2 

2.2 

Yi =f (X1, X2, X3) 1.725(0.014*) 1.024(0.00*) 0.177 (0.343)   92.0 0.5888 

5.2 

10.0 

5.2 

Yi =f (X1, X2, X4) 2.150(0.006*) 0.855 (0.001*) 0.138 (0.293) 0.105(0.313)  92.4 0.5042 9.3 5.1 6.7 

Yi =f (X1, X3 ,X4) 2.127(0.006*) 0.717 (0.020*) 0.191(0.205) 0.171 (0.122)  92.6 0.5063 

14.3 

4.7 

7.5 

Yi =f (X2, X3, X4) 3.272(0.000*) -0.148(0.547) 0.580 0.018*) 0.433(0.000*)  92..4 0.5042 9.3 5.1 6.7 

Yi =f (X1, X2, X3, 

4) 
2.131(0.008*) 0.720 (0.028*) 0.006 (0.981) 0.185 (0.491) 0.169(0.233) 92.6 0.5052 

15.6 

15.9 

14.6 

12.0 

Footnote: p-values in parenthesis where *significant at 5%. 

Table (5.0) shows that two models have high VIF value (> 10) in one or two independent of variables. However, the best fit for model is (Yi 

=f(X3, X4)) after dropping the two collinear variables (X1 and X2) with R2 equal to 90.3% which is slightly high and the two variable coefficients 

significant at 5%.  
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Table 6: Comparison of the best fit models [Model A to D], Using AIC Equation (17) 
 

 Parameter Estimates with p-values in parenthesis 
 

R2 

 

RSS 
AIC VIF Models Identified 

Model 
0  3  4  

Model A:Yi =f(X3, X4) -1386(0.546) 2.359(0.073**) 8.307(0.000*) 89.2 6156346432 567.5187 
1.4 

1.4 
3 

Model B:Yi =f(X3, X4) -39880(0.006*) 6444(0.036*) 3070(0.085**) 58.0 4033990668 556.9505 
2.2 

2.2 
4 

Model C:Yi =f(X3, X4) 7.0187(0.000*) 0.00042(0.000*) 0.0005(0.000*) 84.2 34.519 92.53775 
1.4 

1.4 
3 

Model D:Yi =f(X3, X4) 3.4639(0.000*) 0.4604(0.000*) 0.3960 (0.000*) 90.3 37.020 94.28646 
2.2 

2.2 
2 

Table 6.0 shows model C (inverse semi-logarithmic) with the lowest AIC as the best fitted model with Yi =f(X3, X4) as the parsimonious model. 

Note should be taken that the two heteroscedastic models A and B have very high AIC in comparison to the homoscedastic models (C and D). 

 

6. Conclusion 

This research examined multicollinearity among economic variables in the presence of heteroscedasticity disturbance using linear 

model and some transformed models namely; Semi-logarithmic, Inverse Semi-logarithmic and Double logarithmic. 

Multicollinearity was detected using Variance Inflation Factor (VIF) and Bunch-map and Farrah-Glauber test while 

heteroscedasticity was confirmed using Gold-Quandt test. The results confirmed existence of multicollinearity among the 

explanatory variables and heteroscedasticity was found only in the linear model (model A) and the semi-log model (model B). The 

models were compared to determine the best fitted model. Furthermore re-parameterization of the models was done to show the 

effect of coefficients of each model and determine the most parsimonious model. The best fitted model based on AIC was seen to 

be the Inverse Semi-logarithmic (model C) within which after eliminating the multi-collinear variables the model y = F(x3+x4) was 

found to be the most parsimonious with the two coefficients showing significant effect. It was also observed that the models with 

heteroscedasticity had only one significant variable in their best fitted model while the homoscedastic models showed that both 

variables were significant, based on that we can conclude that the presence of heteroscedasticity hinders the true effect of 

regression coefficients. It was also observed that the heteroscedastic models had very high AIC’s in comparison to the 

homoscedastic models, so we can therefore say that the relative information lost by heteroscedastic models is quite high thereby 

increasing the prediction error of the estimators. This analysis was done using Microsoft Excel, Minitab 17 and SPSS 21 software.  
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