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Study of numerically effective vector bundles 

 
Dr. Ravindra Kumar Dev 

 
Abstract 

Parabolic bundles were introduced in [1]. It is now known the various notions related to the usual vector 

bundles actually extend to be context of parabolic vector bundles. In [2] the notion of ampleness of a 

vector bundle was extended to the parabolic category. In [3] and [4] various results on usual ample vector 

bundles were generalized to parabolic ample bundles. 
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Introduction 

The notion of numerically effectiveness of a vector bundle is very closely related to the notion 

of ampleness. Defining the notion of numerically effectiveness of a parabolic vector bundle, 

we generalize some known results on usual numerically effective vector bundles to the more 

general context of parabolic bundles. 

 

Properties numerically effective vector bundles 

Let X be a connected smooth projective variety over C. For a vector bundle E over X, the 

projective bundle over X consisting of all hyper planes in the fivers of E will be denoted by 

PE. The tautological relative ample line bundle over PE will be denoted by O (1). We recall 

the definition of a numerically effective vector bundle.  

 

Definition 1.2.3 

A line bundle L over X is called numerically effective (abbreviated as nef) if for any morphism 

ƒ: CX, where C is a connected smooth projective curve, the inequality is valid.  

.deg(ƒ*L) 0           …. 1.1 

 

More generally, a vector bundle E over X is called numerically effective if the line bundle 

OPE(1) over PE is nef in the above sense. For a vector bundle V over a connected smooth curve 

C, let dmin(V) denote the degree of the final piece of the graded object for the Harder –

Narasimhan filtration of V. In other words, if  

O= Vo V1 V 2…….  V1  V1+1 =V     …..1.2 

 

is the Harder- Narasimhan filtration of V, then dmin (V) :=deg (V/V1). 

 

Proposition 1.2.3 

A vector bundle A over X is nef if and only if for any morphism ƒ form a curve C to X, as in 

definition 1.1, the inequality Dmin (ƒ*E)0 is valid. 

 

Proof: 

(If Dmin (ƒ*E)  0, then it is easy to see that deg (L) 0,  

where L is any quotient line bundle of ƒ*E. Indeed, if 

0 = E0  E1 ……  E1  E1+1 = ƒE      ……..1.3 

is the Harder- Narasimhan filtration of ƒ*E and deg (V/V1) 0, then for any line bundle L’ 

over C with deg(L’)< 0,the following is valid
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H0 (C,Hom(E1+1/E1,L’) = 0      ……….1.4  

 

for all i É [0,1]. This implies that L’ cannot be a quotient line 

bundle of ƒ*E. 

The above observation that deg (L) 0, immediately yields 

that the vector bundle E is nef [6]. To prove the converse, we 

assume that E is nef. Taking ƒ as above, and let a filtration as 

in (2.3) be the Harder-Narasimhan of ƒ*E. Let r be rank of 

ƒ*E/E1.Since E is nef, the pullback ƒ*E is also nef, and hence 

we have that ^rƒ*E is nef [Vi 6], But the line bundle ^r 

(ƒ*E/E1’) is a quotient of ^rƒ*E. Thus the inequality dmin 

(ƒ*E) = deg(^r(ƒ*E/E1)) 0 is valid. This completes the proof 

of the proposition. We fix a polarization L on X. Any vector 

bundle V over X admits a unique Harder-Narasimhan 

filtration [11]. As before, define 

dmin(V): =deg(V/V1): =x c1(V/V1) c1(L)d-1 

 

where d = dimcX. 

 

Theorem 1.2.5 

If E is a nef vector bundle over X, then dmin(E) 0. If dincX 

=1, then any vector bundle E over X, with dmin(E) 0, is nef. 

 

Proof: 

Let 0 = E0  E1  E2  ……. E1  E1+1 = E be the Harder-

Narasimhan filttation of E. 

Let ƒ: CX be a smooth irreducible complete intersection 

curve such that the restriction of al Ei+1/Ei, 0  1 1, to C is a 

semistion vector bundle. The existence of such a curve C is 

ensured by the main theorem of [5] which says that a vector 

bundle over a smooth projective variety is semistable if and 

only if its restriotion to the general complete intersection 

curve of sufficiently large degree is semistable. Thus the 

restriction 0 = E0  E1/c  E2/c  …… E1/c  E1+1/c = ƒ*E of 

the above filtration of E to c is actually the Harder-

Narasimhan filtration of ƒ*E. Indeed, if F  ƒ*E is the 

maximal semistable subbundle, then µ(F) µ(E1/c), and hence 

F does not admit any nonzero homomorphism to the quotient 

vector bundle (E1+1/c)|(E1/c) for any i  1. Thus F must 

coincide with E1/c. Now the above claim is established by 

using induction on the lengh of the Hardr-Narasimhan 

filtration of the vector bundle E. 

If E is nef, then from proposition 1.2.3 it follows that  

dmin(ƒ*E) 0. This, in turn, implies that dmin(E)0. 

 

Now let X be a Riemann surface, and let E be a vector bundle 

over X with dmin(E)0. This implies that dmin (Sk(E))0, 

where Sk(E)is the k- fold symmetric tensor power of E. 

Let L be a line bundle over X with deg(L)> 0. A consequence 

of the inequality dmin (Sk(E)) 0 is that any quotient of Sk(E) is 

nonnegative degree. Hence any quotient of Sk(E) L is of 

strictly positive degree. Now from a theorem of [6] we 

conclude that sk(E) L is ample. The theorem of [6] in question 

says that a vector bundle over a complete curve is ample if 

and only if its degree and also the degrees of all its quotient 

bundles are all strictly positive. For a non-constant morphism 

of curves ƒ: C X, if V is an ample vector bundle over X, then 

ƒ*V is ample. So from [3] we conclude that E must be nef. 

This completes the proof of the theorem. We remark that the 

second part of Theorem 4.2.5 can also be deduced using 

proposition 4.2.3. A vector bundle E over a projective 

manifold X is called numerically flat if both E its dual E* are 

nef [7]. 

 

Proposition 1.2.6 

A vector bundle E is numerically flat if and only if e is 

semirically with c1(E) =0 = c2(E). 

 

Proof:  

Let E be a numerically flat vector bundle over X. Since the 

Harder-Narasimhan filtration of E* is simply the dual of the 

Harder-Narasimhan filtration of E, the conditions obtained 

from Theorem 1.2.5, namely dmin(E)0 and dmin(E*) 0, 

immediately imply the E is semistable with C1(E) = 0. That 

C2(E) = 0 follows, o f courde, from [7]. Converely, let E be a 

semistable vector bundle over X with C1(E) = 0 C2(E). From 
[8] we know that E admits a filtration  

F1  F2  …..  Fk  Fk+1 = E 

 

and a flat connection  on E which preserves each Fi and the 

induced connection on each Fi+1/Fi is a unitary flat connection. 

Thus for any map ƒ: C  X from a curve C, the vector bundle 

ƒ*E over C has a flat connection, namely ƒ*, such that on 

each ƒ*Fi+1/Fi it induces a unitary flat connection. This 

implies that ƒ*E is a semistable vector bundle over the curve 

C with deg (ƒ*E) = 0. Now from the second part of Theorem 

4.2.5 we conclude that ƒ*E is nef. Thus E must be nef the 

same argument shows that E* is nef. This completes the proof 

of the proposition. In the next section we will define the 

notion of nefness in in the context of parabolic sheaves. 

 

Parabolic Nef Bundles 

Let D be an effective divisor on X. Let E. be a parabolic 

vector bundle ample ample bundles were defined; this 

generalizes the notion of ample vector bundles to the 

parabolic context. 

 

Definition 1.3.1   

A parabolic vector bundle E, is called parabolic nef if there is 

an ample line L over X such that Sk(E) L is parabolic ample 

for every k, where Sk(E.), denotes the k-fold parabolic 

symmetric tensor power of the parabolic bundle E [2] for the 

definition of parabolic tensor product. If the parabolic 

structure of E, is trivial, i.e., zero is the only parabolic weight, 

then from proposition 2.9 of [3] it follows that E. is parabolic 

nef if and only if the underlying vector bundle is nef in the 

usual sense. Henceforth, we will assume that the parabolic 

divisor D on X is a normal crossing divisor. By this we mean 

that D is reduced, each irreducible component of D is smooth, 

and furthermore, the irreducible components intersect 

transversally. The parabolic structure of a parabolic bundle E 

is defined as follows: 

For each irreducible component Di of the parabolic divisor D, 

a filtration by coherent subsheaves of the voctor bundle E\Di 

over Di is given, together with a system of parabolic weights 

corresponding to the filtration [1, 9]. 

We will henceforth consider only those parabolic bundles E, 

for which the filtration over any Di defininig the quasi-

parabolic structure, is by subbundles of E/Di. Let E be a 

parabolic vector bundle with rational parabolic weights. Then 

there is a Galois covering map p : c  X and on orbifold vector 

bundle E with rational parabolic bundle E is obtained by 

taking invariants of the direct image of the twists of V using 

the irreducible components of D [9]. 

 

Proposition 1.3.2 
A parabolic vector bundle E with rational parabolic weights is 

parabolic nef if and only if the underlying vector bundle for 
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the corresponding orbifold vector bundle V on Y is nef in the 

usual sense. 

 

Proof: 

Let L be an ample line bundle over X. Since the above 

covering map p is finite, the line bundle p*L over Y is also 

ample. We assume that the vector bundle V is nef. So Sk (V) 

p*L is ample for sufficiently large k [3]. Since the orbifold 

bundle Sk(V) corresponds to the parabolic bundle Sk(E.) [2], 

and furthermore,  from the definition of parabolic amplitude it 

si immediate that the parabolic bundle corresponding to an 

orbifold bundle whose underlying vector bundle is ample, is 

actually parabolic ample, we conclude that E. is parabolic nef.  

Now we assume that E. is parabolic nef, Lemma 4.6 of [2] says 

that Sk (V) L is ample if Sk (E)L is parabolic ample. So we 

conclude that V must be nef. This completes the proof of the 

proposition. As the tensor product of a nef vector bundle and 

an ample vector bundle is ample, the above proposition has 

the following corollary. 

 

Corollary 1.3.3 

Let E. and F. be two parabolic vector bundles with ratonal 

parabolic weights and with parabolic structure over a normal 

crossing divisor D. We assume that E. is parabolic nef and F. 

is parabolic ample. Then the parabolic tensor product E.  F. 

is parabolic ample. We fix a polarization over X to define the 

parabolic degree of a parabolic bundle. A parabolic vector 

bundle admits a canonical filtration of parabolic subsheaves 

with each subsequent quotient parabolic ds filtration to the 

parabolic context. Following the definition of dmin in section 

1.2 we make the following definition. 

For a parabolic sheaf E,*define dmin
par(E.) to be the parabolic  

degree of the minimal parabolic semistable subquotient of E. 

or in other words, dpar
min (E.) is the parabolic degree of the 

final piece of the graded object for the Harer-Narasimhan 

filtration of E. 

Now, as for corollary 1.3.3 the proposition 1.3.2 `combines 

with Theorem 1.2.5 to give the following corollary.  

 

Corollary 1.3.4    

Let E* be a parabolic vector bundle with rational parabolic 

weights. If E* is parabolic nef, then dpar min (E.) 0. If dim 

X= 1, then the converse is also true; namely, if the inequlity d 
par 

min(E.)  0 is valid, then E* must be parabolic nef. 

A parabolic vector bundle E. will be called numerically flat it 

both E* and its parabolic dual E are parabolic nef. Let E. be a 

numerically flat parabolic bundle over X with rational 

parabolic weights and with parabolic structure over a normal 

crossing divisor D. Let VY be the orbifold bundle 

corresponding to E. for a suitable Galois covering map. p:Y  

X with Galois group G. Proposition 1.3.2 says that V is 

numerically flat, i.e., both V and V* are nef. Now proposition 

1.2.6 says that v is semistable with c1(V) = 0 =c2(V). Since V 

is semistable, from [9] it follows that E. is parabolic 

semistable. Since the first and the second chern class of V 

vanish, from [10] it follows that first and the second parabolic 

shern class of E. vanish. conversely, if E. is parabolic 

semistable with its first and the second parabolic chern class 

zero, then from [9] and [10] we know that the corresponding 

orbifold bundle V is semistable whit the first and the second 

shern class of V being zero. So proposition 1.2.6 yields that v 

is numerically flat. Now proposition 1.3.2 says that the 

parabole bundle E. is numerically flat. Thus we have proved 

the following. 

 

Theorem 1.3.5 

A parabolic bundle E. with rational parabolic weights is 

numerically flat if and only if E. is parabolic semistable with 

vanishing first and second parabolic chern classes. using [10], 

from the above theorem it is easy to deduced that a parabolic 

vector bundle E. over X, with rational parabolic weights, is 

numerically flat if and only if the following condition is valid 

: the underlying vector bundle E for the parabolic vector 

bundle E. has a filtration by subbundles of E such that each 

subsequent, quotient vector bundle with the induced parabolic 

structure, induced by E. corresponds to a unitary 

representation of the fundamental group of the complement 

X-D, where D is the divisor on X over which the parabolic 

structure of E is defined. The above statement can also be 

deduced using proposition 1.3.2 together with [7]. 

 

Conclusion  

Numerical study of effective vector bundles has been 

presented. Here we defined numerically effective bundles in 

the parabolic category. Some properties of the usual 

numerically effective vector bundles are shown to be valid in 

the more general context of numerically effective parabolic 

vector bundles. Various properties of effective vector bundles, 

definitions, theorems and propositions were presented and 

proved. The parabolic ‘negf ‘bundles were also presented. 
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